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(57) ABSTRACT

A structured singular value (_t) analysis method of comput-

ing flutter margins has robust stability of a linear aeroelastic

model with uncertainty operators (A). Flight data is used to

update the uncertainty operators to accurately account for

errors in the computed model and the observed range of

aircraft dynamics of the aircraft under test caused by time-

varying aircraft parameters, nonlinearities, and flight

anomalies, such as test nonrepeatability. This I_-based

approach computes predict flutter margins that are worst-

case with respect to the modeling uncertainty for use in

determining when the aircraft is approaching a flutter con-

dition and defining an expanded safe flight envelope for the

aircraft that is accepted with more confidence than tradi-

tional methods that do not update the analysis algorithm

with flight data by introducing _t as a flutter margin param-

eter that presents several advantages over tracking damping

trends as a measure of a tendency to instability from

available flight data.

1 Claim, 11 Drawing Sheets

REVISE A/C MODEL ]_
{

al I Generate Computer Model I

^ ICompute flutter margins using # and optionallyl
az also compute flutter margins using known

trad tional method
i

a3 Check # flutter margins against flutter margi-_optionally computed using known traditional I
method J

.___ NOT OKOK, PROCEED

Take A/C to flight condition F and measure fligh-_date including dynamic pressure j bl

Compute flutter points at flight condition F I b2
using singular value pt

t
Determine dynamic pressure difference between ]

that at present flight condition F and at

predicted flutter pont Fp

b3

+
If dynamic pressure difference is large take aircraft to 1

flight condition Fi=F+A F and repeat steps bl-b4 but if I
small declare F_ a point on expanded _ght envelope
and repeat step,_ bl-b4 until expanded flight envelope b4

has beendefined
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REVISE A/C MODEL_

al [ Generate Computer Model 1

rCompute flutter margins using IXand optionally 1
a2 I also compute flutter margins using known l

, traditional method 1

a3
Check ix flutter margins against flutter margins

optionally computed using known traditional
method

NOT OKOK, PROCEED

ITake A/C to flight condition F and measure flight
date including dynamic pressure.

' {
Compute flutter points at flight condition F

using singular value IX

Determine dynamic pressure difference between

that at present flight condition F and at

predicted flutter point Fp

bl

b2

b3

If dynamic pressure difference is large take aircraft to
flight condition Fi=F+AF and repeat steps bl-b4, but if
small declare Fp a point on expanded flight envelope
and repeat steps bl-b4 until expanded flight envelope

has beendefined

I FIG. 23
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ON-LINE it METHOD FOR ROBUST
FLUTTER PREDICTION IN EXPANDING A

SAFE FLIGHT ENVELOPE FOR AN

AIRCRAFT MODEL UNDER FLIGHT TEST
5

ORIGIN OF INVENTION

The invention disclosed herein was made by employees of
the United States Government and may be manufactured and

used by or for the Government for governmental purposes
without the payment of any royalties thereon or therefor, l0

FIELD OF THE INVENTION

This invention relates to flight flutter testing, which is the

process of expanding the envelope that determines a range 15
of flight conditions within which an aircraft is safe from
aeroelastic instabilities. This testing must be done for all
new and reconfigured aircraft,

BACKGROUND OF THE INVENTION
20

Traditional methods of flight flutter testing analyze sys-
tem parameters, such as damping levels, that vary with flight
condition to monitor aircraft stability. (M. W. Kehoe, "A

Historical Overview of Flight Flutter Testing," NASA-TM-
4720, October 1995.) A real-time method to estimate the 25

damping levels was developed based on a recursive

prediction-error method. (R. Walker and N. Gupta, "Real-

Time FLutter Analysis," NASA-CR-170412, March 1984.)

This method was extended to improve the estimates by

considering an extended Kalman filter in the formulation. 30

(R. Roy and R. Walker, "Real-Time Flutter Identification,"

NASA-CR-3933, October 1985.) On-line methods using

both time-domain and frequency domain characteristics of

turbulence response data have also been formulated to

estimate dampings. (C. L. Ruhlin et at., "Evaluation of Four 35

Subcritical Response for On-Line Prediction of Flutter

Onset in Wind Tunnel Tests," Journal of Aircraft, Vol. 20,

No. 10, October 1983, pp. 835-840.) These methods moni-

tored stability at test points, but they were of limited

usefulness for predicting the onset of aeroelastic flutter 40

because damping may be highly nonlinear as flight condi-

tions vary, so damping trends may indicate stability despite

proximity to an explosive flutter condition. An alternative
eigenspace method was formulated based on orthogonality

between eigenvectors, but this method uses a parameter that, 45
similar to damping, indicates stability and may vary non-

linearly with flight condition. (D. Afolabi et al., "Flutter

Prediction Using an Eigenvector Orientation Approach,"

A1AA Journal, Vol. 36, No. 1, January 1998, pp. 69-74.)

The concept of predicting the onset of flutter by analyzing 50
flight data at subcritical airspeeds has been introduced in

conjunction with a method for formulating a flutter margin
envelope. (N. H. Zimmerman and J. T. Weissenburger,

"Prediction of Flutter Onset Speed Based on Flight Testing

at Subcritical Speeds," Journal of Aircraft, Vol. i, No. 4, 55
July-August 1964, pp. 190-202.) This method considered
the interaction of two modes in the flutter mechanism to

formulate a stability parameter that varied quadratically with

dynamic pressure. This technique has been extended to

consider several modes interacting as the flutter mechanism

in order to demonstrate a prediction method for higher-order

flutter. (S. J. Price and B. H. K. Lee, "Development and

Analysis of Flight Flutter Prediction Methods," AIAA

Dynamics Specialists Conference (Dallas, Tex.) AIAA-92-

2101, April 1992, pp. 188-200; S. J. Price and B. H. K. Lee,

"Evaluation and Extension of the Flutter-Margin Method for

Flight Flutter Prediction," Journal of Aircraft, Vol. 30, No.

2

3, May-June 1993, pp. 395-402; and K. E. Kadrnka, "Mul-

timode Instability Prediction Method," A1AA Structure,

Structural Dynamics, and Materials Conference (Orlando,

Fla.), AIAA-85-0737, April 19185, Volume 2, pp. 453--442.)

These flutter margin testing techniques have been used for

wind tunnel and flight test programs. (R. M. Bennett,

"'Applications of Zimmerman Flutter-Margin Criterion to a
Wind-Tunnel Model," NASA-TM-84545, November 1982

and H. Katz et al., "F-15 Flight Flutter Test Program,'"

Fluner Testing Techniques, NASA-SP-415, October 1975,

pp. 413-431.) However, the method is of limited applica-

bility for general flight flutter testing because the assump-

tions of few modes coupling and the requirement to observe

those modes may be too restrictive.

Stability parameters were also introduced in determining

flutter margins that consider an autorepessive moving aver-

age process to describe the aeroelastic dynamics. One

parameter was based on determinants from a stability cri-

teflon for discrete-time systems that are excited by random
turbulence. (Y. Matsuzaki and Y. Ando, "Estimation of

Flutter Boundary from Random Responses Due to Turbu-

lence at Subcritical Speeds," Joumul of Aircraft, Vol. 18,

No, 10, October 1981, pp. 862-868 and Y. Matsuzaki and Y.
Ando, "Divergence Bounda_'. Prediction from Random

Responses; NAS's Method." Jtm roul of Aircraft, Vol. 21,

No. 6, June 1984, pp. 435-436._ A similar parameter was

developed by extending the deternlinant method to consider
short data segments with assumptions of local stati0narity.

(Y. Matsuzaki and Y. Ando, "'Flutter and Divergence Bound-

ary Prediction from Nonstationary Random Responses at

Increasing Speeds," AIAA Strm'tun,s. Structural Dynamics,

and Materials Cot!fere.ce lOrlando, Fla.), AIAA-85-0691,

April 1985, Vol. 2, pp. 313-32(1._ Another extension to this

method derived a similar stability parameter but relaxed the

requirements for stationarincss. I H. Torii and Y. Matsuzaki,

"Flutter Boundary, Prediction Ba-_ed on Nonstationary Data

Measurement," Journal _f Air_'ratt. Vol. 34, No. 3, May-

-June 1997, pp. 427--432. IThe,.e techniques of determining

flutter margins can be applied to complex systems and

require only turbulence fi)r excitation: however, the flutter
boundary is computed by extrapolating a nonlinear function

and may be misleading.

In view of the foregoing, it is clear that in the past the

actual flight envelope developed for aircraft operation is

essentially determined only b_ flight testing. The edges of

the envelope are points where either the aircraft cannot fly

any faster because of engine limitations or, with a 15%

margin for error, where the damping trends indicate a flutter

instability may be near. After flight testing, the envelope thus
empirically determined is used for regular operations. It

would be desirable to use both the aircraft model computa-

tions and the test flight data in determining flutter margins in

order to provide a more expanded and robust flutter margin

envelope.

STATEMENT OF THE INVENTION

An object of this invention is to improve flight test
efficiency along with maintaining a high level of safety in

60 the process of producing a robust flutter margin envelope for
an aircraft model.

A further object is to provide an on-line method of

producing a robust flutter margin envelope that is essentially

model based so that it not only has the desired predictive

65 nature of a traditional method but also utilizes flight test data

to obtain the desired accuracy of predictive estimates. This

combines the strengths of both the traditional p-k method
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and the new method of on-line estimation of the damping

method. This new method, referred to hereinafter as a unique
p method of flight testing for flutter margins is tor on-line

flight test prediction based upon both analysis data of the
,aircraft model and flight test data in order that analysis data

be updated during the testing procedure for continual cor-
rection of the aircraft model data.

What is required is a robust stability approach to formu-
lating a flutter margin envelope that considers a state-space
model of the aircraft. This method is based on a formal

mathematical concept of using a structured singular value, _,

that guarantees a level of modeling errors to which the
aircraft is robustly stable as described in a technical paper by

the present inventors R. C. Lind and M. J. Brenner, "Robust
Flutter Margin Analysis that Incorporates Flight Data,"

NASA-TP, March 1998, and presented orally on Sep. 9,
1997, the presentation of which has been documented by a
technical memorandum, NASA/TM-97-206220, titled "A

Presentation on robust Flutter Margin Analysis and a
Flutterometer," both of which by this reference are incor-

porated herein.

A realistic representation of the modeling errors can be
formulated by describing differences between predicted

flight and measured flight data. In one application of this
invention, the method has been successfully used to corn-

pule flutter margins for an F/A-18 Hornet aircraft modified
into a Systems Research Aircraft (SRA) at NASA Dryden
Flight Research Center. The robust flutter margins were

determined form aeroelastic flight data to demonstrate the

potential errors that may exist in the flutter margins corn-

puled by a traditional p-k analysis. (R. Lind and M. Brenner,

"Robust Flutter Margins of an F/A-18 Aircraft from

Aeroelastic Flight Data," Journal of guidance. Control and

Dynamics, Vol. 20, No. 3, May-Jane 1997, pp. 597-604.)

In accordance with the present invention, on-line estima-

tion of flutter margins are computed during a flight test in

contrast to the prior-art flight flutter testing techniques

referred to above which actually involve a two-step process
that first requires a computational analysis of the aircraft

model to estimate off-line flutter margins and then does a

flight test of the margins. Although the computational part is

often not discussed in conjunction with the actual flight
testing part, it is in fact a necessary part.

The basic prior-art procedure that is fairly universal with

industry and military organizations around the world con-

sists of two parts:

Part I: Pre-flight estimate of flutter margins

(1) Generate a computer model that is a 'best-guess" of the
aircraft model.

(2) Compute flutter margins for the aircraft model using

a well known p-k method.

(3) If margins are too small, redesign the aircraft and

modify the computer model accordingly. Then repeat

steps 1 and 2.

(4) If margins are OK, flight test the aircraft.

Part II: Flight test to determine envelope

(1) Take aircraft to test point at flight test condition E a

dynamic pressure defined by, for example, altitude and

airspeed.

(2) Telemeter flight data to ground control room, unless

the following step 3 of this Part It can be carried out by

computers already mounted in the aircraft.

(3) Estimate dynamics from flight data such as damping.

(4) Evaluate levels and trends of dynamics.

(5) If trends are OK, take aircraft to a flight condition
closer to last estimated aeroelastic flutter condition

(F,.=F+A F) and repeat steps 2, 3, and 4.

4

(6) If trends at any flight test condition are not OK, then

declare that condition F as a flutter margin, a point on
the edge of the aircraft's safe flight condition envelope.

Note that the information from the computation step ( I ), Part
5 I, is not used during the flight test, Part II. Conversely, the

information from Part II is not used during Part I. This is
essentially why the computational Part I is not mentioned

when discussing flight testing Part II. Instead, only the

computation of margins in Part I are used as a first flutter

lo m.argin estimate. If the flutter margin computation is good,
_tis assumed there are no obvious problems with the aircraft,
but even if so, a robust flight envelope has still not been

determined because the computational results can never be
completely trusted. This is so because the model can only be

an approximation to the real aircraft and there are often
J5 important oddities about the real aircraft resulting in errors

that are not anticipated. The estimated flutter margins that

are then adopted as the boundaries of the safe operating
envelope are only determined by flight testing in Part II

without any method of correcting for such unanticipated
20 errors.

Moreover, there is a dramatic risk associated with that

flight testing procedure because of the unreliability of look-

ing at damping trends. Damping does not smoothly change
as an instability condition is approached: rather, the damping

__5 may often undergo sudden changes. Thus, the damping

trends may seem good at flight condition E but there is no

guarantee that the damping will not sharply change as the

flight condition is changed to F+A F and aeroelastic flutter of

the aircraft may occur. This lack of ability to predict an

30 instability is the reason for the risk in flight flutter testing in

this tradition procedure. This results in a greater time and

cost in flight testing because the envelope of safe operating

conditions must be expanded more cautiously using very
small increments of AF.

35 In contrast, the present invention comprises a method

used with a singular value, _t, to predict fight margins from

flight data at successively higher dynamic pressure condi-

tions of flight at which an onset of a flutter condition will

occur. Thus, for given dynamic pressures, such as a given

altitude and successively greater airspeed., the point at

which aeroelastic flutter will occur is predicted, and the

process is repeated for the full range of dynamic pressures

at which the aircraft is capable of safely operating, such as

altitudes and airspeeds. Ideally, each flutter margin predicted

45 at a given altitude will be the same. To expand a full

operating envelope, the procedure is repeated at all altitudes
at which the aircraft is capable of operating. In the ixmethod

of this invention, the flight data is not used to estimate model

parameters or to identify a transfer function; rather, the flight

50 data is only used to update the uncertainty description for the

theoretical model of the aircraft being tested. This approach

avoids several difficulties in trying to estimate a high-order

model from flight data that has low signal-to-noise ratio but

still accounts for time-varying dynamics by updating the

55 uncertainty description to describe changing errors between
the aircraft and the nominal model.

The stability parameter, ix, that is central to this new flutter

margin method is essentially linear with changes in flight

condition. Consequently, instabilities can be accurately pre-

6o dicted. In addition, this method can easily consider realis-

tically high-order models and does not make assumptions
about the number or type of modes that interact as the flutter

mechanism. The process used in a flight flutter test is as
follows:

65 Part I: Pre-flight estimate of flutter margins

(1) Generate a computer model that is "best-guess' of the
aircraft model.
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(2) Computer flutter margins for aircraft model using the
well known p-k method (optional).

(3) Compute robust flutter margins for aircraft model

using the singular value _t method.

(4) If the flight envelope determined by computed flight

margins is too small under either computation method.

redesign aircraft and repeat steps 1.2 and 3.

(5) If the flight envelope thus computed is OK, flight test
aircraft.

Note that step 3 is what distinguishes over the prior art.

Part II: Flight test to determine actual safe aircraft flight

envelope

(1) Take aircraft to a safe test point at flight test condition

F, a dynamic pressure defined by, for example, altitude

and airspeed.

(2) Telemeter flight data to ground control room, unless

the following step 3 of this Part II can be carried out by

computers already mounted on the aircraft.

(3) Compute a predicted flutter point Fp at a higher
dynamic pressure using a flutterometer algorithm based

on both flight data and singular value _.'

(4) If the difference between the present flight test con-

dition F i and the predicted flutter point Fp is large, then
expand the next flight text condition to F=Fi+A_- and

repeat steps 1, 2 and 3.

(51 If the difference is small, then declare the last pre-

dicted flutter margin Fp as a point on the edge of the

envelope.
The algorithm is repeated for all altitudes at which the

aircraft is capable of operating until a completed and robust

envelope is developed.

The main advantage to using this _ algorithm over tradi-

tional methods is that with each iteration at a new flight

condition F, a new predicted flutter point is determined,

whereas in the prior-art damping algorithms that is not the

case. Moreover, the envelope can be expanded more confi-

dently and in greater increments of AF because there is not

so much concern about sudden changes in damping and

stability. The basic flowchart for the flutterometer algorithm
is as follows:

1. Read flight dada D from test point at flight condition F.

2. Generate computer model P of aircraft at E

3. Generate A to relate P and D.

4. Compute analysis of (P,A) using the _t method.

5. Compute prediction of flutter margin from p., a struc-

tured singular value from step 2.

A key point is that the flutterometer algorithm works by

using both the computed model data and the flight data. This

is important because using only one set of data is insuffi-

cient. The model is only an approximation, so it cannot be
trusted completely, and the flight data only indicates the
current state of the aircraft so it cannot be used alone to

predict the flutter margins. Using both provides robust flutter
margin prediction which is most important because it

enables the safe flight condition envelope to be reliably
established without the aircraft actually reaching or even

closely approaching a flutter point. Reliable prediction

throughout the entire process of developing the flight enve-

lope is due to the fact that the flutterometer algorithm uses

flight data to continuously update the structured singular

value /a.

Another key point is that time-varying changes in the

aircraft dynamics that give rise to modulating errors are

taken into account. For example, the weight of a fighter

plane undergoes significant changes as fuel is consumed

10

15

6

during the flight tests, but the flutter margins are updated

correspondingly. This updating is essentially related to the

manner in which flight and model data are combined in

generating an operator A that describes changes in the

model. This is so because the structured singular value _t is

a function of the plant or system P (i.e., aircraft) and is

defined by the following:

_IP) =

minff'(A):A _ A, det {1 - PA) = 0

where: _t(P)=O if no A exists such that det(1-P&)=0, and A=a

structured uncertainty operator (modeling errors and

perturbations) which is allowed to lie within a norm-
bounded set such that

.x={,x:lAIl__1}, and

20 is a set of perturbations such that the size of the perturbations

[IAII_ is =<1. This means that for robust stability of the plant,

no perturbation A greater than size Ikxll_< 1 can destabilize

the plant. Thus, the increase of _ is the smallest destabilizing

perturbation, i.e., an exact measure of stability.

25 An algorithm is provided for updating the aircraft model

using the uncertainty operator A during flight testing under
different conditions, and a procedure that uses the structured

singular value _ to determine if the aircraft system P with its
set of uncertainty matrix operators A is not invalidated. If so,

30 the set is adjusted until it is not for robust stability of the

system, This model validation is then used to generate
reasonable norm bounds for a sufficient set of uncertainty

operators scaled such that _t is always less than unity.

Two separate algorithms, local and global, are provided

35 for using flight data sets to update uncertainty operators

associated with the aircraft plant model P. In the local

algorithm, flight data at identical flight conditions is used.

This is done by independently computing uncertainty

descriptions, i.e., sets of operators A for models at different

40 flight conditions, resulting in smaller uncertainty operators

required for subsonic plants and a less conservative worst-

case flutter margin. In contra_t, the global algorithm uses the

entire set of flight data at all flight conditions to generate a

single uncertainty description, i.e., set of operators A for all

45 normal aircraft models. A disadvantage is possibly more

conservative flutter margins, but an advantage is that the

uncertainty description used for computing a flutter margin

(estimate of distance to a flutter point) is truly a worst case.

Although this statement of the invention speaks of devel-
50 oping the flight envelope for new or reconfigured aircraft by

testing at elevations with progressively increasing airspeed
(to progressively increase dynamic pressure) in search for

robust flutter margins (distance to a flight envelope on a

graph of altitude versus airspeed), it should be understood

55 that it is possible to hold true airspeed constant for each

flutter margin prediction while progressively increasing

dynamic pressure by changing altitude or Mach number

which is a function of air density that depends on altitude

and air temperature. Consequently, while holding a lower

60 true airspeed constant, the computed flutter margin may

predict a point below sea level. That is a valid prediction, but

the predicted point is outside the flight envelope to be

promulgated as the universe of safe operating conditions
with a conventional 15% margin for error at lower altitudes.

65 While the _ method of computing robust flutter margins

has been developed for promulgating an envelope of safe
operating conditions, it should be noted that in aircraft



US 6,216,063 BI

7

having greater computer data processing capability the IX

method can be used with a display as a cockpit flutterometer

to provide the pilot with virtually real-time information

about changes in flutter margin in terms of altitude, airspeed

and dynamic pressure to indicate how far the aircraft can 5

drop before reaching a predicted flutter condition as well as

damping trend to indicate when the flutter condition is near.

BRIEF DESCRIPTION OF THE DRAWINGS

10
FIG. 1 illustrates diagramatically an information flow-

chart for traditional and IX methods to compute flutter

margins.

FIG. 2 illustrates a block diagram for the small gain

theorem, t 5

FIG. 3 illustrates a block diagram with uncertainty for the

example system.

FIG. 4 illustrates a block diagram for robust stability

analysis of the example system using the small gain theo-
rem. 20

FIG. 5a illustrates a linear fractional transformation F,(E

A), and FIG. 5b illustrates a linear fractional transformation

FI(EA).

FIG. 6a illustrates a family of plants P=P(I+AW) with
25

input multiplicative uncertainty, FIG. 6b illustrates a family

of plants P=-P(I+AW)P with output multiplicative uncer-

tainty and FIG. 6c illustrates a family of plants P=-P+AW

with additive uncertainty.

FIG. 7 illustrates a linear fractional transformation system 3o
for robust stability analysis using _t.

FIG. $ illustrates a linear fractional transformation system

for nominal stability analysis in the Ix framework with

parameterization around perturbation in dynamic pressure.

FIG. 9 illustrates a linear fractional transformation system 35

for robust stability analysis in the IXframework with param-

eterization around perturbation in dynamic pressure and

structured uncertainty.

FIG. 10 illustrates a linear fractional transformation sys-
tem for robust stability analysis in the _ framework with 40

parameterization around perturbation in dynamic pressure

and uncertainty in structural stiffness and damping matrices.

FIG. 11 illustrates a linear fractional transformation sys-

tem for robust stability analysis in the IXframework with
45

parameterization around perturbuation in dynamic pressure

and uncertainty in A o and B o matrices of the state-space
Q(s) model.

FIG. 12 illustrates a linear fractional transformation sys-

tem describing Pad_ approximation to represent unsteady 50
aerodynamic force matrix in the IXframework with uncer-

tainty in lag terms.

FIG. 13 illustrates a family of plants P=Po(I+AW) with

input multiplicative uncertainty.

FIG. 14 illustrates transfer functions for example system 55

with multiplicative uncertainty.

FIG. 15 illustrates a family of plants P=Po+WA with

additive uncertainty.

FIG. 16 illustrates transfer functions for example system 60
with additive uncertainty.

FIG. 17 illustrates linear fractional transformation system

with nominal models and associates uncertainty operators.

FIG. 18 illustrates system responses for hardening spring

example. 65

FIG. 19 illustrates system responses for softening spring

example.

8

FIG. 20 illustrates system responses for hysteresis

example.

FIG. 21 illustrates a linear fractional transformation sys-

tem for robust stability analysis and model validation with

forcing and measurement signals.

FIG. 22 information flowchart to generate plant and

uncertainty operators from a system model and flight data

with the IXmethod.

FIG. 23 is a flow chart for the over-all IXmethod for robust

flutter prediction and safe flight envelope expansion of an
aircraft model under test.

DETAILED DESCRIPTION OF THE

INVENTION

1. INTRODUCTION

Aeroelastic flutter is a potentially destructive instability

resulting from an interaction between aerodynamic, inertial,

and structural forces. The stabifity properties of the aeroelas-

tic dynamics must be investigated to determine a flight

envelope that is clear of flutter instabilities for new aircraft

designs or new configurations of current aircraft. Analytical

predictions of the onset of flutter must be accurate to reduce

dangers and costs associated with experimental estimation.

Critical flutter conditions are the points closest to the

flight envelope at which flutter instabilities occur. This

concept of closeness is formally defined here as a flutter

pressure that considers the critical dynamic pressure for a
constant Mach value. Obviously, different flutter measures

such as a flutter speed can be defined because a unique
equivalent airspeed is associated with each dynamic pres-

sure for a given Mach number; however, the following

definition 1.O. 1 for a flutter pressure will be used to

describe the critical flutter flight conditions.

Definition 1.O.1

A flutter pressure in the smallest value of dynamic pres-
sure for which an aircraft at a particular Mach number

experiences a flutter instability.

The flutter pressure is used to compute a stability margin,

or flutter margin, that indicates the distance between the

flutter pressure and a reference point. A common flutter

margin, F, considers the difference in dynamic pressure

between the flutter pressure and a point on the edge of the

flight envelope. Another common flutter margin, _, consid-

ers the percentage difference between equivalent airspeeds
at the flutter condition and a point within the flight envelope.

Definition 1.0.2

Aflutter margin relates a measure of distance between the

flight condition associated with the flutter pressure and a

reference point.

The traditional p-k method has been extensively used to

compute flutter margins for a variety of military and com-

mercial aircraft. (H. J. Hassig, "An Appropriate True Damp-

ing Solution of the Flutter Equation by Determinant

Iteration," AIAA Journal of Aircraft, Vol. 8, No. 11, Novem-

ber 1971, pp. 885-889.) This iterative method uses an

analytical dynamic model coupled with harmonic motion

solutions for the unsteady aerodynamic forces. The p-k

method predicts flutter margins entirely from a theoretical

model that may not accurately describe the true dynamics of

the airplane. The resulting flutter margins do not account for

possible variations between the model and the aircraft.

The community studying aeroelasticity has identified the

development of improved methods for characterizing flutter

margins as a vital research area. Flight testing for envelope
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expansion incurs dramatic time and cost because stability
margins are not computed with a high level of confidence

using traditional methods. The flutter dynamics often exhibit

an explosive behavior that results in a sudden change in
stability for a small change in flight conditions. Thus, small

errors in predicted margins could have grave consequences
for aircraft and crews operating near the flutter conditions.

Several approaches exist for characterizing accurate flut-
ter margins using flight data generated by the aircraft. These

data describe the true dynamics and can be used to generate
realistic models and compute confident flutter margins.

Parameter estimation algorithms have been developed to
directly identify an aeroelastic model from the flight data.

The accuracy of the resulting model can deteriorate as the

complexity and number of degrees of freedom of the system
increase and signal-to-noise ratios decrease from optimal

wind-tunnel conditions to realistic flight levels. Modal fil-
tering has been introduced in association with parameter

estimation algorithms m simplify analysis by decoupling the
system into a set of first-order responses. This type of
filtering does not guarantee robustness and may not perform
well for systems with many closely-spaced modal natura/

frequencies that cross and shift as flight conditions change.

Other approaches toward computing confident flutter mar-

gins evaluate the robustness of a stability margin with
respect to changes in the model as an indication of the

confidence in that margin. A flutter margin robust to pertur-
bations to the model is a confident margin because model

inaccuracies do not affect that margin. An algorithm has

been developed to compute the most critical flutter margin

with respect to first-order perturbations in a model. This

method considers only parametric perturbations and can be

computationally expensive. A robust control framework has

been adopted using a feedback structure to relate the struc-

tural model and the aerodynamic model. This approach uses

highly conservative robustness conditions with respect to an

uncertainty structure that may not be physically meaningful.

A similar approach is adopted allowing unmodeled dynam-

ics and high-order parametric perturbations based on series

expansion. Statistical approaches are also considered to

formulate a flutter probability measure. These approaches

will converge to a robustness indicating using Monte Carlo

simulations, but the computation time can be prohibitive for

complex systems. The robustness measures for these per-

turbation and statistical approaches are suspect because no

global guarantees can be made as to perturbations not

explicitly considered by the minimization algorithms or the
Monte Carlo simulations.

An approach to computing flutter margins that guarantees

a level of robustness and directly accounts for flight data is

presented herein. (R. Lind and M. Brenner, "Robust Flutter

Margins of an F/A-18 Aircraft from Aeroelastic Flight

Data," A1AA Journal of Guidance. Control and Dynamics,

Vol. 20, No. 3, May-June 1997, pp. 597-604.) An aeroelas-

tic model is formulated in a formal robust stability frame-

work that uses a set of norm-bounded operators, A, to

describe modeling errors and uncertainty. A multivariable

robust stability measure known as the structured singular

va/ue, _, computes flutter pressure that are robust to the

amount of modeling errors as determined by A. (G. J. Bales

et al., Ix-Analysis and Synthesis Toolbox, Musyn Inc. and The

MathWorks Inc., Minneapolis, Minn. and Natick, Mass.,

1995.) A robust flutter margin problem is posed by ques-

tioning what is the largest increase in dynamic pressure for

which the plant is stable despite possible modeling errors
described by A.

Flight data are easily incorporated into the analysis pro-

cedure. The modeling errors are determined by comparing

16,063 B I

10

transfer functions obtained by flight data with transfer

functions predicted by the analytical model. The norm
bound on A is chosen based on these observed errors. A

model validation condition is used to ensure the A is

5 sufficient to account for multiple data sets without being

excessively conservative. With respect to A. a worst-case

flutter boundary is computed that directly accounts for flight
data.

This method illustrated diagrammatically in FIG. 1 is

to inherently different from traditional algorithms based on p-k

methods or parameter identification and robustness

approaches. The Ix method uses information from both an

analytical system model and flight data; traditional

approaches use only one of these sources, namely the system

15 model in the p-k method. Methods that use only an analyti-

cal model can be inaccurate, and methods that use only the

flight data can fail if the data are of poor quality. The Ix

method uses the flight data to improve the analytical model

by adding uncertainty operators. Poor quality flight data will

20 merely increase the difficult) of obtaining a reasonable

uncertainty description resulting in a small A. The robust
margins will be similar to the nominal margins in this case,

which makes intuitive sense because any information

obtained from the data should only enhance the plant model
25 and improve the accuracy of the "flutter margin.

The concept of computing robustness in flutter margins

has been recognized for its importance and has recently been
termed a state-of-the-art rescm-ch area in aeroelasticity.

Informal measures of robustness are not necessarily useful

30 because the informal measurc_ provide no guarantee for the

system stability. The Ix method is based on operator theory

and provides a well-defined concept of robustness that has a

clear set of guarantees as to the stability properties of the

system.
35

ROBUST STABILITY

A common definition of a signal is a Lebsegue measurable

function that maps the space of real numbers R into R _. A

40 space of such signals is denoted S.

Definition 2.1. I

The space of signals that are Lebesgue measurable func-
tions is S.

45

s= _f:R_R '_1 ( l J

Analog measurements xtt_ of physical systems are real

vector functions of the real parameter t describing time and

thus are valid members of the space of signals, x(t)_S.
50 Values of the time parameter, which are often arbitrarily

numbered as a distance from some reference point, actually

extend to positive and negati ve infinity. Stability for physical

systems must ensure stability for all values of time. A

time-domain 2-norm is defined as a measure of size (or

55 energy) for time-domain singlas x_t/eS that considers all
time.

Definition 2.1.2

The 2-norm measures the energy of a signal x(t)eS.

60

IIX,r)II: = (___lx(t)l z d ,} 1;" (2)

One characteristic of a stable system is that only finite-

65 energy output signals are generated in response to finite-
energy input signals. Signals with finite energy are known as

"square integrable" because the integral of the square of the
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signal is finite. The Lebsegue space of square integrable

signals is defined as ff2(--_ooo). This space is also referred to
as the infinite-horizon Lebesgue 2-space to denote that the

norm uses an integral over infinite time.
Definition 2.1.3

The space _2(-oo,_} consists of square integrable time-
domain signals.

2(_.°*)=l _t):x_, p,r(t_l].,<o,} 13) 10

Signals associated with physical systems are only known

for values of time greater than the time at which measure-

ments are started. Stability analysis and norm computations

using these signals cannot use properties of the signal before
the starting time because no information is known. The t5

traditional method of characterizing these signals is to

assume the signal is identically zero for all times before the

starting time. The time value at which measurements are

started can be chosen without loss of generality and is

usually chosen to be t=0. The space ff2(0,oo) is defined as a 20

subset of the infinite-horizon Lebesque 2-space to empha-

size such signals. They are identically zero for all t<0.
Definition 2.1.4

The space ff2[0,oo)ct4--oo, oo) consists of square inte- 25
grable time-domain signals that are identically zero for all
t<0.

12

notation by rarely distinguishing between time-domain and

frequency domain signals except where the context does not
make it clear. The notations for the 2-norm of domain and

frequency domain are also not distinguished because the

notations are equivalent, as demonstrated by Parseval's

identity.

An important subspace of ff 2 is the Hardy space, _t_,.This

space contains the complex variable tions that are analytic in
the open right-half of the complex plane and have finite
2-norrn.

Definition 2.1.8: The Hardy space, 9-Q,i2, consists of the

following functions.

9_.--{f(s):f(sl_kf: and f{s_is analytic in Re(sl>0} (8t

System Plant

A system P is defined as an operator mapping the space of

input signals Si, , to the space of output signals So,,,. This

definition implies that for any w¢S,, and z=Pw, then Z¢So, ,,

P:S_,---)s.... (%

Linear, time-invariant systems defined by state-space equa-
tions are considered.

x(t) D/, II u(tJ I
H0)

I £_ [[x(t)[]dt ..... It) = 0 for all t < 0} (47£:[0. oo1= .t(tl: -'

A similar space i_(--_.O) is defined for signals x(t) that
are assumed to begin at t=--oo and are identically zero for all

times t=0. Thus, the integral to compute the energy for

elements of this space considers t=--oo until t>0.
Frequency-domain signals are often considered in stabil-

ity analysis but do not fall into the set of signals, S. These

signals .f(jt0) are complex-valued functions of the imaginary

unit j=v--r, and the real frequency variable co is expressed in

rad/sec. The set, Sj, o is defined for frequency-domain sig-
nals.

Definition 2. 1.5

The space of frequency domain signals is Sjo,.

sj,o={f(jtm:jR-+C" and f*O(ol=.f'(-jo:,)} (51

A frequency-domain 2-norm is formulated to compute a

measure of energy.
Definition 2.1.6

The 2-norm measures the energy of the signal fClo_)eSj,,,.

A frequency-domain Lebesgne space,if,, is defined for
finite-energy signals.

Definition 2.1.7

The space ft,_ consists of frequency-domain signals with

finite energy.

The signal x(t)¢R"' is the state vector, u(t) CR''' is the input

3o vector, and y(t) cR "° is the output vector. The state update

matrix is A;, eR"_'% Bp eR ''_m determines how the input
affects the states; C e eR ...... computes the outputs as a linear

combination of states; and Dp eR .... ' is the direct
feedthrough from inputs to outputs. The operator S={Ap,

35 Be, Ce, Dp} denotes the time-domain state system.
Linear time-invariant state-space system are commonly

represented by transfer-function operators. These function,

P(s), are complex-valued matrices of the complex Laplace
transform variable, s. Such a transfer-function matrix exists

40 if and only if the state-space system is linear and time-
invariant.

P( sP=Dp+C,,_ sI_ -Ap)-t Bt, ( 11 )

Stability must be considered over the infinite-horizon time
45

lengths so that the operators used map i2 (.,,_ oo) into _2

(_oo,oo) Properties of the Fourier transform relating i_ (oo,_)

and if2 simply a state-space system, S: t, (-oo,,,o)--+i 2

(.oox,oo), is linear and time-invariant if and only if the

50 associated transfer-function matrix P is such that y=Pu _i2.

This condition leads to consideration of the gain for these

signals.

55

_ _ {f(jo)):J'%o,l_/2<_} {7_
The spaces i2(--o*,oo) and ff 2 are isomorphic Hilbert

spaces under the appropriate inner produce through the 65

Fourier transform, which means the spaces have equivalent

algebraic properties. TN relationship is used to simplify

(12)

This ration of 2-norms will be finite if the system is stable.

Properties of the 2-norm are used to derive a condition on

6o the system transfer-function operator, P. This condition is
referred to as an induced norm because it results from

consideration of signal norms associated with the operator.

The t2 induced norm is defined as the _ oo-norm.

Definition 2.2.1: Define the _-(_-norm for transfer-function

operators.
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A space of operators with finite 9{-nortn is denoted a.s ff_.

Definition 2.2.2: The space ff_ consists of system with

finite ,'_-norm.

14

The second condition in theorem 2.3.1 is associated with

the first condition guaranteeing a well-posed and stable

system. This uniqueness condition can be understood by

consideration of the solution y for the loop equations shown
in FIG. 2.

Transfer functions of linear time-invariant systems are stable

if and only if z=Pw and w ¢_2 implies z¢3-( 2. This impli-

cation results from the Laplace isomorphism between _2 [0,

oo) and 9£ 2 space. These transfer functions are shown to be

analytic in the open right-half complex plane with finite

9£_-norm. Define the space _ to contain these operators.

Definition 2.2.3: The space 3£_ consists of transfer func-

tions of stable, linear, time-invariant system with finite

_-norm.

_]_z={P: P is analytic in Re(s0>0 and I[Pll_'<_} (15)

A subspace _t _f_ is often defined for rational elements.

Definition 2.2.4: The space, _9-f_, ,--9£_ consists of ratio-

nal elements of 9£_.

_H7 ={p: P¢9_ and P is rational} (16)

Transfer-function operators of linear, time-invariant state-
space systems are rational functions of the Laplace trans-

form variable, s. These transfer functions P e_3-(_ if and

only if P is stable such that no poles lie in the closed

right-half plane. The space _= which may appear to be

mathematical abstraction, is thus shown to have a physical

interpretation. _t _K_ is merely the operator theory repre-
sentation of stable, rational, transfer functions.

Small Gain Theorem

Stability of a linear time-invariant system is determined

by location of all poles in the left-half plane. Robust stability

in the _ and V frameworks is determined by considering

an interconnection of stable operators. The basis for deter-

mining stability of these interconnections of operators is the

"small gain theorem. "

The small gain theorem states that a closed-loop feedback

system of stable operators is internally stable if the loop gain

of those operators is stable and bounded by unity. Several
formulations of the small gain theorem are derived for

various signals and systems. Theorem 2.3.1 presents the

formulation used for this application.

Theorem 2.3.1 (Small Gain Theorem): Given the feedback
interconnection structure of FIG. 2 for stable transfer-

function operators P, A: ___---_ff2 with P, A_I-C_; if the

_K_-norm of the loop gain is bounded by unity such that

I]PA[G<I, then:
1. the closed-loop system is well-posed and internally

stable.

2. a unique y, w ¢ff_ is associated with each u eff_.

This small gain theorem is overly reslrictive in the sense

of requiring P, A¢ _ 3/_. A more general small gain theorem

is formulated for operators not restricted to lie in the

subspace P, Ae_t_; theorem 2.3.1 is a special case of this

general theorem. The extended operator space in the general

small gain theorem allows consideration of robustness for

systems composed of nonlinear and time-varying operators.

The requirement of considering stable, rational, transfer-
function operators is explicitly stated in the theorem to

emphasize that the nominal aeroelastic system considered in
this paper is assumed to be stable and the flutter margin is

associated with a destabilizing perturbation to that nominal

system.

y=l_u+W I=(I-PAV_ Pu (17_

The inverse term, (I-PA) -_ has a magnitude of infinity if
10

the norm of PA is allowed to he unity. Such a condition
would allow the norm of signal y to be infinite despite a

norm-bounded u input signal. Restricting I]PA]]_<I ensures

the inverse term exists and a unique finite-nornl y is gener-
ated in response to a finite-norm u. The issue of well-15
posedness requires this condition to hold at s=_ and is

automatically considered by the _f_-norm.
Robust Stability

The small gain theorem can be directly used to analyze

2o robust stability, of a plant model with respect to a set of
perturbations. These perturbations are used to describe
uncertainty in the analytical plant model caused by errors
and unmodeled dynamics. Usually, the exact value of the

modeling error is not known, but a norm-bounded, real

25 scalar, o_>0, can be placed on the size of that error. Define the

A of norm-bounded operators describing these perturbations

that affect the plant P through a feedback relationship.

A={A:IJAJi__-< o_} (18_

30 The small gain theorem allows consideration of the entire

set of possible modeling uncertainties as described by all

AeA. The 9(_-norm of the loop gain cannot be explicitly

computed for these systems because an infinite number of

35 loop gains PA generated by the A exists. The triangle
inequality of norms can be used to generate a sufficient

condition for robust stability of P.

IIPAI[---<I[PIId]_L (19
4o

A condition for robust stability of the close&loop system
can be stated.

Lemma 2.4.1: The plant P is robustly stable to the set of

uncertainty perturbations, & that enter the system as in FIG.

45 2 with ][A[[_<c_ for all A_A if

IIl_l,<'/_ 1201

Lemma 2.4.1 shows a sufficient, but not necessary, con-

50 dition fo robust stability. The structured singular value, _t, is
introduced in the next chapter as a less conservative measure

of robust stability that is sufficient and necessary.

An excellent illustrative example has previously been

presented to demonstrate the issue of robust stability. This

55 example uses classical arguments to compute a robust sta-
bility condition for a simple system that is seen to be
identical to the robust stability condition generated using the

small gain theorem and lemma 2.4.1. A similar example is
given below for the feedback interconnection in FIG. 3.

The single-input and single-output elements in the nomi-
60

nal system model of FIG. 3 are p, which represents the plant

dynamics; a, which represents actuator dynamics; and k,

which represents a feedback controller. Each of the nominal

system elements are stable transfer functions contained in

65 81_. A modeling error exists on the output of the actuator

that is represented by a muhiplicative uncertainty operator,

g>¢_9£_, on the output of the element a.
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The transfer function from w to z can be computed as
follows.

z=-I-( l+akp)-lakp)w (21

Internal stability of the closed-loop feedback system is

equivalent to stability of the feedback system shown in FIG.

4a with the operator g-_(l+akp)-Iakp.

Because the operators 6 g _3t _ are stable, the Nyquist

criterion determines the closed-loop system is stable if and

only if the Nyquist plot of fig does not encircle the -1 point.

This stability condition is equivalent to the following norm
condition.

sup_g0o)&j_o_<I (22)

This condition is an __-norm condition on the loop gain,

g& Thus, classical Nyquist arguments derive an _-t,-norm

condition that is equivalent to the stability condition imme-

diately formulated by applying the small gain theorem.

closed-loop stability--->lig& (_< l (23)

The error in the actuator command is unknown and

possibly time-varying, so the operator 8 is used to allow

consideration of a range of errors. Assume the actuator is

weighted such that the range of errors is described by the set

of perturbations, I_1 <1. Lemma 2.4.1 is used to generate a

condition that ensures the system is robustly stable to all

actuators errors described by &

closed-loop stabili ty *---{]g [1_< 1 (24)

3. STRUCTURED SINGULAR VALUE

Linear Fractional Tra,_fformations
The linear fractional transformation (LF1F) is a common

framework suitable for robust stability analysis using argu- 35

ments based on the small gain theorem. An LFT is an

interconnection of operators arranged in a feedback con-

figuration. These operators can be constant matrices, time-

domain state-space systems, or frequency-varying transfer
functions. Consider a linear operator PeC _°'+c_-_×_"÷_-"that is 40

partitioned into four elements.

16,063 B 1
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Be, Cp, De) matrices of a state-space realization. The

transfer function can be written as an upper-loop LFT

involving S and the Laplace transform variable s where l/s

) over s is an integrator.
5

P(s) = Dr, + Ce(sl- At,)-J Bp (28)

x=At,._+B,o,, _s=IAp Be]= l)y = Cpx + D_u Ce Do = F.(S,

10

The LFT is a useful framework for analyzing complex

systems with many feedback and series interconnections of

operators. Property 3.1.3 shows the main property of LFFs

that will used herein. This property allows complex systems

t5 of several interconnected LFTs to be expressed as an equiva-
lent single LFT. The operators of the new LFT are block-

structured with blocks composed of the individual operators

of the LFTs from the original system.

Property 3.1.3: Feedback and series interconnections of

2o LFTs can be formulated as a single LFf.

This issue of stability for LFT systems is associated with

the concept of a well-posed interconnection. Stability analy-

sis based on the small gain theorem given in theorem 2.3.1
can be used to guarantee the LFI" is stable and well-posed.

25 Structured Uncertainty

The concept of uncertainty is formulated as a set of

norm-bounded operators, A, associated with a nominal plant,

P, through an LFI" feedback relationship. A family of plants,

30 _ arises through consideration of F,(P,A) for every AeA.

The true plant model is assumed to lie within this family of

plants.

Modeling the uncertainty as a norm-bounded operator can

lead to overly conservative models. The uncertainty descrip-

tion can be made more accurate by including frequency

information. Formulating a model of a physical system that

is accurate at low frequencies but less accurate for repre-

senting the system response at high frequencies is often

possible. A frequency-varying transfer function, W, is gen-

erally associated with each uncertainty element to describe

magnitude and phase uncertainty as it varies with frequency.

Uncertainty can enter a system model in a linear fractional

manner in several general ways. Two typical types of

uncertainty are termed "multiplicative" and "additive"

uncertainty. Multiplicative uncertainty can be either on the

input or output of a system. Systems with these types of

uncertainty are easily described in block diagram form. FIG.

6a shows the LFT for a plant with input multiplicative

uncertainty. FIG. 6b shows the plant with output multipli-

50 ca(ire uncertainty. FIG. 6c shows additive uncertainty.

Uncertainty can also be associated with specific elements

of the system. These parametric uncertainties are usually

associated with a system operator in a feedback relationship.

The number of input and output siguais of the system

55 operator is increased to account for the additional feedback

signals associated with the uncertainty operator. This opera-

tion can be demonstrated by considering P generated by a

system with an unknown pole.

p=[e. p__,] (25)
P21 P22

45

The LFT, F,(EA), is defined as the interconnect-ion matrix

such that the upper loop of P is closed with the operator
AeC+,_,.

Definition 3.1.1: Given PeC _°'÷°_-_×"'+j:_ and AeC l'_' define

F,,tP.A) as the upper-loop LFT of P closed with A such that

y=F,,(EA) u as in FIG. 5a.

F,,(P.A _P....+P21A(i-Pt iA)-_Pt- (26)

A similar LFT is defined as Ft(P,A) to represent the

interconnection matrix of the lower loop of P closed with an
operator A_C i:_-.

Definition 3.1.2: Given P_C _O_+°:-)×(h+i:) and A_C i-'×°:-, define

F,,(P,A) as the lower-loop LFT of P closed with A such that
y=E (P,A) u as in FIG. 5b.

Fl(P,A_=Pu +Pt.A(I--P..A)-IP-I (27)

An example of an ,ereonnection that is common in

stability analysis is t; :epresentation of a time dependent

state-space system a._ _equency-varying transfer function.

Define S as the con._tant matrix whose entries are the (Ae,

60

65

1 [2, 129)
_={(s+l)(s+x):X_ 31}

A norm-bounded, real, scalar, uncertainty parameter 5 can

be introduced to account for the possible variation in pole

value. The set of plants can be written in the LFT framework

using this uncertainty operator and definition 3.1.1.
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if [JPIJ_<I. This robustness condition can be overly conser-
{30_ vative because it does not account for structure in the

uncertainty operator. The structured singular value, IX, is
defined as an alternative measure of robustness.

5 Definition 3.3. !

Given the complex transfer-function matrix Pe3tg-f_ and

associated norm-bounded set of uncertainty operators A,

define g.

A complex system with several uncertainty operators can

be expressed as an LFI" with a single uncertainty operator
using property 3.1.3. This operator is structured as a block-

diagonal operator with each block associated with the indi-
vidual uncertainty operators. Two main types of uncertainty

blocks exist. A full-block uncertainty is a matrix with
unknown elements. This type of block is used to describe

unstructured uncertainty in a group of signals.
Definition 3.2.1: A full-block uncertainty, AeC "x'', has

unknown elements Az/for every ie(1,n) and je(l,m).
A repeated-scalar block introduces more structure into the

uncertainty description than a full block does. Only the

diagonal elements of the matrix contain unknown elements:

the remaining elements are zero. Furthermore, the diagonal
elements are identical. This type of uncertainty is used to

relate inpu-output signal pairs with the same uncertainty

parameter.
Definition 3.2.2: A repeated-scalar block uncertainty AEC ''<"

has zero-valued elements except an unknown parameter

along the diagonal such that A--_I,,, A scalar block is a

repeated-scalar block of dimension 1.

The single structured uncertainty block used for robust
stability analysis is formally defined in terms of these

blocks. Let integers m, n, and p define the number of real

scalar, complex scalar, and complex full blocks respectively.
Define integers R_..... R,, such that the i'h repeated-scalar

block of real, parametric uncertainty is of dimension R_ by

Rj. Define similar integers C¢..... C,, to denote the

dimension of the complex repeated-scalar blocks. The struc-
tured uncertainty description A is assumed to be norm-

bounded and belonging to the following set.

,._= IA= diag(6_l,_j .... 6Rl,v_,. 6_1cI.... .6,Clc,, Ab .... Ap): (31)

6_ • k. 6', _ C. a_ _ C_il

Real parametric uncertainty is allowed to enter the prob-

lem as scalar or repeated-scalar blocks. Complex uncertainty
enters the problem as scalar, repeated-scalar, or full blocks.

Complex uncertainty parameters allow uncertainty in mag-
nitude and phase to be modeled; uncertainty in physical

characteristics can be more accurately modeled with real

parameters. The robustness analysis will be less conserva-

tive by accounting for this structure to accurately describe

the model uncertainty.

Structured Singular Value

FIG. 7 shows the general framework for robust stability

analysis. The plant operator P(s) _N_ is a stable, rational,

transfer-function matrix representing the aeroelastic dynam-

ics. A norm-bounded A_I _)1_ is described such that A(s)_.A

describes the modeling errors in P through a feedback

relationship.
The robustness of P with respect to the A can be deter-

mined using the small gain theorem as presented in lemma

2.4.1. This condition guarantees stability for any value AeA

10
_(P) =

I 132)

rain _(A}:del(/- pA} = O}
AeA

Define g=O if no AeA exists such that det(l-PA)=0.
15

The structured singular value is an exact measure of

robust stability for systems with structured uncertainty. The

value of IX determines the allowable size of uncertainty

matrices for which the plant is robustly stable as demon-
strated in theorem 3.3.2.

20
Theorem 3.3.2

Given the system in FIG. 7, P is robustly stable with

respect to the A, which is norm-bounded by real scalar tx

such that ]_A[l__-<etfor all A_._Xif and only if IX(P)<I/ct.

The model P is usually internally weighted such that the25
range of modeling errors is described by the uncertainty set
,5, which is norm-bounded by 1.

I,AI}_ l for all Ae.5 (33)

3O Theorem 3.3.3 presents the specific condition for robust

stability that will be used I-or unity norm-bounded uncer-

tainty sets.
Theorem 3.3.3

Given the system in FIG. 7. P is robustly stable with

35 respect to the A with liA[,.._- I for all AeA if and only if

g(P)<l.

A value of B<I implies no perturbation within A exists that

will destabilize the feedback x.xstem. This condition can also

be interpreted as saying the true plant dynamics are stable,

40 assuming these dynamics lie _ tthin the range generated by

the nominal model dynamics coupled with the set of mod-

eling errors.

Obviously, Ixis dependen! on the block structure of A. The

robust stability properties computed by Ix will only be
45 accurate if a realistic uncertainty operator is chosen. The

structured singular value ma) be arbitrarily greater when

computed with respect to an unstructured uncertainty opera-
tor as compared to a highly structured uncertainty, operator.

Definition 3.3.1 demonstrates the _t condition of theorem

50 3.3.3 is equivalent to the small gain condition of lemma

2.4.1 when the uncertainty is unstructured.

Unfortunately, Ixis a difficult quantity to compute. Closed-

form solutions exist to exactly compute IXfor only a small

number of block structures for A. Upper and lower bounds

55 are used to compute Ix for generalized uncertainty block
structures.

4. ROBUST FLUTFER MARGINS

60 Nominal Aeroelastic Model

Consider the generalized equation of motion for the

structural response of the aircraft.

M[l$]$':gti+O'l+Krl+OQ(s}q=O (34)

65

For a system with n modes, define MeR '_ as the mass

ma_.x, CeR '_ as the damping matrix, and KeR .... as the
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stiffness matrix. Define q_R as a scalar representing the

dynamic pressure, and Q(S)eC"'" as the matrix of unsteady

aerodynamic forces. This equation is valid for a particular

Mach number, with a different Q(s) describing the unsteady

aerodynamic forces at a different Mach number.

Values of the aerodynamic force matrix at distinct fre-

quencies can be derived using finite-element models of the

,aircraft and panel methods for unsteady force calculations.

This research uses a computer program developed for NASA

known as STARS. This code solves the subsonic aerody-

namic equations using the doublet-lattice method. The

supersonic forces are generated using a different approach

known as the constant panel method.

Formulating a linear time-invariant representation of the

aerodynamic forces to incorporate them into the robust

stability framework is desired. Pad6 approximations can be

used to compute a rational function approximation to the
transfer-function matrix.

s s

Q, = Ao + sAi + sZA2 + s + [3---_A3 + s--_Aa

(35)

This form is often referred to as Roger's form. The

equation presented here includes only two lag terms,
although more terms can be included. The poles of the lag

terms. I]p and ___, are restricted to be real and positive to

maintain system stability. The matrix elements of Roger's

form can be computed using a least-squares algorithm to fit

the frequency-varying aerodynamic data.

The aerodynamic lag terms can be replaced in the for-

mulation with a finite-dimensional state-space system rep-
resented by a transfer-function matrix using Karpel's
method.

Q_ s ,_a,o+sA j+s2A2CQ_sI-AQ) -I 8QS (36)

Standard system identification algorithms, including

curve-fitting or least-squares approaches, can be used to

compute the elements in the state-space portion of the

formulation. The A_ matrices are assumed to be known from

the low-frequency aerodynamic force data or from experi-
mental wind-tunnel data.

A matrix fraction approach is also formulated to represent

the aerodynamic forces as a linear time-invariant system.

This generalized form computes rational matrix polynomials

in a fractional form using a least-squares algorithm. Roger's

form and Karpel's form can be shown to be subsets of the
matrix fractional form.

The approach taken in this application is to fit the aero-

dynamic force matrices to a single, finite-dimensional, state-

space system. This form is most similar to Karpel's form,

except the additional A t matrices are not explicitly
accounted for in the formulation.

20

and s-_.An approximation to these forms allows them to fall

within the framework of the method used. Including a

high-frequency pole in the nonproper term, such as replac-

ing s with

AQ B o ] = D o + CQ(sl - AQ )- IBQ
Q(s)= CQ DQ

s+ 10000"

would not affect the low-frequency region of interest while
10 ensuring stable and proper functions. With the

approximation, the forms of Roger and Karpel can be shown
to be subsets of this method.

Standard frequency-domain system identification algo-

rithms can generate a system with an arbitrarily large
15 number of states. This state dimension does not greatly

affect the computational cost of the robust stability analysis.

Extending the robustness analysis to controller synthesis,

however, places an emphasis on limiting the state dimen-

sion. imiting the number of states in the identification
20

process is not directly considered here, although standard

model reduction techniques can be used on the state-space

system to lower the state dimension.

Generating a state-space representation of the aeroelastic

25 system, including the state-space form of the unsteady
aerodynamic forces, is straightforward, Consider the force

vector, y, generated by the state vector, rI. Define xeR "_ as

the vector of aerodynamic states.

l B°llxl30 y = Q_s)q¢= = Ce Do q

(38)

Using x, formulate the aeroelastic differential equation.

35 O=M[l$1$"gfi+Cr_+K_+#Q_srq=M[l$l$'g_i+C_+g_+4y=-
M[l$]$gli+C_+grl+¢_ CQ.r+D,_I)_MrI+Co+(K+_D_21q+qC_'39)

A state-space system is formulated using the generalized

states, rland rI, and the unsteady aerodynamic states, x. The

40 state-update matrix is determined by the following three
differential equations.

45

50

(37) 55

Given the number of generalized states, n, and the number

of aerodynamic states, nQ, define AQeR "Q_'Q, BQ¢R "Q'_', 60

CQ¢R '_'Q, and DQ¢R '_" as the elements of the state-space
and system approximating Q(s).

Fitting the aerodynamic data to a finite-dimensional state-

space system is equivalent to fitting each term in the matrix

to a real, rational, proper, u'ansfer function. This method 65

seems to contradict the methods of Roger and Karpel, which

form nonproper transfer functions caused by the terms in s

-M-I{K + _Do) -M-IC -_M ICQ

BQ 0 AQ

140)

Nominal Aeroelastic Model in the Structured

Singular Value Framework

The generalized equation of motion for the nominal

aeroelastic system can be expressed in a form suitable for

using la analysis to compute a flutter margin. The flutter

margin is dependent on the flight condition parameters that

result in a flutter instability, and la is defined to be the

smallest perturbation among the A set that causes an insta-

bility. The obvious approach to formulating flutter analysis

in the _t framework is to introduce a perturbation to a flight

condition parameter and find the smallest perturbation that

causes an instability.

Essentially, the two subsystems in the nominal aeroelastic

model are composed of the structural dynamics, involving

mass, damping, and stiffness matrices; and the unsteady

aerodynamics scaled by the dynamic pressure. The gener-
alized equation of motion demonstrates the dynamic pres-

sure linearly affects the dynamics at a constant Mach con-

dition. Perturbations to dynamic pressure can thus enter the
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system through a feedback operator in a linear fractional
manner that is perfectly suited to IXanalysis.

Consider an additive perturbation, _y_R, on the nominal
dynamic pressure, qo.

Separate terms in the system dynamics that involve _.

O=M[l$l$'g¢i+C_+_K+qO,,_q+qC,ax

=M'q+[Cq_K+_toDe_q+qoC,7,,l+Sa[OQq+C_.,x]

---rl+lM -jCq+M" J(K+qoD Q)q+qo M- JC,ax]

+ta[M -joeq+M-' Ce_.]

--q+lM-_C_+M-' _K+qoO_,_rl+qoM-'C_,vl+tq=

=q+lM- tCfl+ M- I_K+qoDe _tl+qoM- tCQXI+W (42 I

The signals z and w are introduced into this formulation

to associate the perturbation in dynamic pressure to the

nominal dynamics in a feedback manner. The signal z can be

generated as an output of the plant because z is a linear
combination of states.

z=M-_Dorl+M-I C_.,v _43)

The signal w is related to z by the dynamic pressure

perturbation.

*_'=-tqz (44)

The state-space aeroelastic model for nominal stability
analysis in the IXframework is formulated using the state-

update matrix. This matrix is determined by the dynamics at

the nominal dynamic pressure, and the additional input and

output signals that introduce perturbations to the dynamic

pressure. That perturbation, _q, is not an explicit parameter

in the state-space model because _ only affects the plant

through a feedback relationship as deten-nined by the sig-

nals z and w. Define the transfer function P(s) generated by

state-space matrices such that z=P(s)w.

0 l 0

-M-I(K + _oDo) - M-I C -_M-t CO

BQ 0 AQ

M-I DQ 0 M-I C_2

0] I r/ (45)

-1 0

0 x

o

FIG, 8 shows the feedback interconnection between the

perturbation in dynamic pressure and the nominal plant

model parameterized around that perturbation. This inter-

connection is an LFT, and the small gain condition of lemma

2.4.1 or the IXcondition of theorem 3.3.3 can be directly

applied to analyze stability with respect to a variation in the
flight condition q.

Formulating the nominal aeroelastic dynamics in the ix

framework immediately demonstrates the procedure used in
computing a flutter margin. Traditional flutter analysis algo-

rithms such as the p-k method and the ix method as applied

to FIG. 8 are searching for a value of dynamic pressure that

results in a flutter instability. The nominal flutter margin

question may be posed, which is answered by these meth-
ods,

Question 4.2. l

Nominal Flutter Margin

What is the largest perturbation to dynamic pressure for

which the nominal aeroelastic dynamics are stable?

22

The dimension of the uncertainty block is the dimension
of the signal z. The state-space equations for P_sl demon-

strate this dimension is the number of modes in the system,
n. The number of free variables in the p upper-bound

optimization, and consequently the computational cost of IX,

is a function of the uncertainty dimension. In this way, the

number of aerodynamic states, n_, does not directly affect
the cost of the flutter estimation. The only cost increase
caused by these additional states is computing the frequency

response of the state-space matrix, which is generally much
Jo lower than the cost of computing ix.

Demonstrating the aeroelastic system formulated in the IX

framework in FIG. 8 is straightforward. The dynamic pres-
sure parameterization is equivalent to the nominal state-

space system given in the previous section. Simply compute

15 the closed-loop transfer function with no uncertainty, _q=0,
and the nominal system is recovered.

Wind-tunnel and ground vibration testing can experimen-

tally determine aerodynamic stiffness and damping matrices

that are more accurate than the matrices approximated by a
20 finite-element model. These matrices can be incorporated

into a nominal state-space model in the , framework.

This procedure considers variations in dynamic pressure
for an aeroelastic model at constant Mach number. The

unsteady aerodynamics are highly nonlinear with variation

25 in Mach number, and attempts to model Mach variations in

an LFT may produce highly conservative flutter margins.

The ;amethod presented herein is considering flutter margins

in terms of dynamic pressure as measured along lines of
constant Mach. Flutter is a function of the two variables,

30 dynamic pressure and Mach, so computing the dynamic

pressure causing flutter for a dense set of discrete Mach

values will generate an accurate portrait of the flutter mar-

gins.

Robust Aeroelastic Model in the Structured Singular Value
35 Framework

A robust aeroelastic model in the ix framework can be

generated by associating uncertainty operators, A, with the

nominal model and including the parameterization around a

perturbation in dynamic pressure. These uncertainty opera-

40 tors can resemble any of the forms presented in section 3.2,

including parametric uncertainty and additive and multipli-

cative representations of dynamic uncertainty.

Choosing a reasonable uncertainty description is crucial

for determining a valid robust flutter margin. This choice can

45 arise logically from consideration of weaknesses in the

modeling process, previous experience with aeroelastic

analysis, and comparison with observed flig."-,- dynamics.

The following section 5 on UNCERTAINTY DESCRIP-

TIONS IN AEROELASTIC MODELS gives a noncompre-

50 hensive examination of several obvious uncertainty descrip-

tions that may be associated with an aeroelastic model.
The LFT is a valuable framework for formulating the

robust aeroelastic model so that the model is suitable for IX

analysis. The various system blocks composed of the nomi-
55 nat state-space model with associated uncertainties and any

additional subsystem blocks and their associated uncertain-

ties can be expressed as a single model and uncertainty

operator.
FIG. 9 shows the block structure used for Ixanalysis of the

60 uncertain aeroelastic system. The structured singular value

is computed with respect to a single, block-diagonal, struc-

tured operator that contains the perturbation to dynamic

pressure and the structured uncertainty operator along the

diagonal. The perturbation to dynamic pressure is explicitly

65 shown to distinguish _q from the modeling uncertainty and

emphasize _ as a special operator used to describe a range
of flight conditions.
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The flutter margin computed for the uncertain system

(FIG. 9) is a more accurate margin than one computed with

traditional methods such as p-k. These traditional methods

address the nominal flutter problem in question 4.2.1; the

robust flutter margin must consider the effect of the model-

ing uncertainty. The robust flutter margin actually finds the

smallest perturbation to dynamic pressure for the entire set

of plants formulated by the interconnection of the nominal

dynamics and all elements A_A. Question 4.3.1 poses how to

compute these mar_ns.

Question 4.3.1

Robust Flutter Margin

What is the largest perturbation to dynamic pressure for

which the nominal aeroelastic dynamics are robustly stable

to the entire range of modeling errors as described by the
norm-bounded A?

This question can be answered by computing Ix for the

system in FIG. 9.

Computing a Flutter Margin with the Structured Singular
Value

The nominal flutter problem posed by question 4.2.1 and

the robust flutter problem posed by question 4.3.1 can be

solved as a Ix computation. The value of Ix is a sufficient

direct indication of the flutter margin for the nominal sys-

tem; additional information regarding the norm bound on the

uncertainty is required to derive the robust flutter margin.

The nominal aeroelastic model is formulated for stability

analysis in the g framework in section 4.2 by introducing a

perturbation, _, to dynamic pressure. A nominal flutter

margin is computed to answer question 4.2.1 by considering

the smallest value of this perturbation that destabilizes the

model. The nominal flutter pressure can be directly calcu-

lated by computing _t with respect to the perturbation

operator _q.

The exact value of g can be analytically formulated to

compute a nominal flutter pressure because a closed-form

solution for Ix with respect to a single, real, scalar operator

is known. This solution is the spectral radius of the

frequency-varying transfer-function matrix.

u(,,,)= ma_p(t:'t/,,,) (46)

24

(i = rtfin I_ : F.(P. 6q)is unstable}

Then _t(P)=l/6 such that qa,,j'°"'-_o+6 is the nominal
flutter pressure and

r',o,,=_i

represents the nominal flutter margin answering question
l0 4.2.1.

Proof

This result is immediately obvious using definition 3.3.1

for _twith respect to a scalar uncertainty parameter _. The
Ix is the inverse of the smallest destabilizing perturbation,

15 and b is computed as the smallest value of _ that destabi-
lizes P; thus Ix(P)=I/& []

Lemma 4.4.1 indicates a computational strategy to com-

pute a nominal flutter margin that does not require a search
over a set of frequency points. The flutter pressure is found

by increasing values of _ until an eigenvalue of the state
2o matrix of F,(P,_) has a negative real part indicating F,(E8

_) is unstable. Algorithm 4.4.2 demonstrates a bisection
search implementation that efficiently computes upper and

lower bounds on the minimum destabilizing _, perturbation
to within a desired level of accuracy.

25 Algorithm 4.4.2 (nominal flutter margin):
Given plant P at nominal dynamic pressure, qo, affected

by perturbation _ as in FIG. 4.1:

Define scalars _i_,p_,.._ t..... ,>0 as bounds on the smallest

destabilizing _.
30 Define scalar e>0 for accuracy.

35

The spectral radius of P(jto) is a discontinuous function of

frequency, so computational algorithms based on searches

over a finite set of frequency points may not guarantee the

correct computation of robustness values. A small amount of

complex uncertainty can be added to the real uncertainty that

allows a continuous Ixfunction to be analyzed but introduces

unrealistic conservatism. An heuristic robustness indicator

can be substituted for _t that considers stability over a 55

frequency segment but is not considered here.

A relatively simple approach can be used to compute Ix

with respect to a single real parameter by considering the

destabilizing value of the parameter. A search over the

parameter space will result in computation of _t and the

desired flutter margin. Lemma 4.4. l presents the principle of

this approach.

Lemma 4.4.1

Given the plant, E derived at nominal dynamic pressure, 65

90, with a perturbation to dynamic pressure, _, arranged in
the feedback relationship of FIG. 9 define 8.

while (6,pro., - d/l_. > e) {

1

if FdP. 6zt)has an unstable pole), then 6.,_r,_. = 6q

else 6to,,,, =

I

40 _'_tl_,<_ = qo + 6_em'_

Robust flutter margins that address question 4.3.1 cannot

45 be computed using algorithm 4.4.2 because art additional

search over the set of uncertainty operators A must be

included. These margins must be computed using the aug-

mented plant P, which includes feedback signals relating the

perturbation to dynamic pressure and the uncertainty

50 description as shown in FIG. 9. Define the block-structured

set of operators _, which considers a particular perturba-
• q

tion _ and set of operators A describing model
uncertainty--

(47)

A set of plant models F,(E A8 ), exists for each value of

60 _q that defines the nominal plant at dynanuc pressure q=qo+6
and variations to that plant caused by the set of uncertain-

ties A. The robust flutter margin corresponds to the smallest

perturbation _q for which an unstable plant, F,(P, Aa.), exists
with S 8 F._8 . If every member of the set of plants I_,,(P, A_.)

is stabl_, _ien q:=_o+_q is not a flutter pressure and
formulated at _ is robustly stable to the uncertainty descrip-
tion A.
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The smallest destabilizing perturbation _ corresponding
to a robust flutter margin can be computed by a IXcompu-

tation. The _t framework analyzes robustness with respect to

a single, structured operator, so the operator set used to

compute a robust flutter margin must contain the set of

uncertainty operators A along with a range of dynamic

pressure perturbations. The IXwill compute the robustness of

P with respect to this operator set to find the smallest

destabilizing perturbation to dynamic pressure and the

smallest destabilizing uncertainty operator. Define the ,5 that

contains A6_ sets for a norm-bounded set of _ operators.

16,063 B 1
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destabilizing perturbation to dynamic pressure is at least 6

ca=l, which corresponds to dynamic pressure q-=qo+Wq-_q -

q,+Wca. Thus, i5 is guaranteed to be robustly stable to the

uncertainty set A for any perturbation to dynamic pressure

5 less than WCa,to WCais a robust flutter margin.
---)(sutticient)

Assume _t(P)>l. Define real, scaler ct<l such that u (P)=

_1. which implies, from theorem 3,3,2, that P is robustly
stable to all uncertainties T_8S with IlAli_<a<l. Thus, P is not

10 guaranteed to be stable over the entire range of modeling

uncertainty defined by the unity norm-bounded set A, so this

perturbation is not a valid robust flutter margin and does not

answer question 4.3.1.

Assume HF<I. Define real, _>1 such that u(P)=rfl, which

implies, from theorem 3.3.2, that P is robustly stable to all

uncertainties AeA with llAl/_<ct. Thus, P is robustly stable to

an uncertainty description larger than that defined by the

unity nonn-bounded set A, so this condition defines a valid

flutter margin but is not the least conservative robust flutter

margin and does not answer question 4.3.1.

The only difference between models P and P results from

the scaling WCawhich scales the feedback signals between P

and _. No external scaling matrix is allowed to affect the
feedback signals between P and A because A is defined with

a unity norm bound. Computing g of the plant P with an

additional scaling on the lower-loop signals would consider

a scaled set of operators A that does not accurately represent

the uncertainty description. Therefore, P only scales the &q
feedback signals.

Theorem 4.4.3 can be modified to compute a nominal

flutter margin by changing the identity matrix in the scaling

used to compute P to a zero matrix. This modification
eliminates the feedback interconnection between the model

and the uncertainty description A, so IXconsiders only the

nominal dynamics and computes the smallest destabilizing

perturbation to dynamic pressure and F,obF .... •

Including the uncertainty, description A ensures the robust

flutter margin will be no greater than the nominal flutter

margin. The robust flutter margin considers the model used

a0 to compute the nominal flutter margin that corresponds to

the uncertainty operator A=0aA and the models that corre-

spond to the remaining operators A_A. The conservatism in

the robust flutter margin makes intuitive sense because the

nominal flutter margin is the worst-case stability boundary

45 for a single model and the robust flutter margin is the

worst-case stability boundary for a family of models.

01 } ,48,= . _ _ & II,all_-<1, II_qll -<I

15

Imposing the norm bound for &_operators as It_l__ -< 1 may
seem overly restrictive because the units of _ are the same
as the units of q in the model. This condition implies the S

considers the range of flight conditions q=q+l lbf/ft -_ for ._0

plants formulated by dynamic pressure in units of lbf/ft 2.

Such a small rb_nge of flight conditions is not useful for

stability analysis unless qo is extremely close to the flutter

pressure. This limitation is avoided by introducing a weight-

ing function, W_, to the computation of q. 25

qw---Oo= Wq,_q (49_

A WCa>I allows a large range of flight conditions to be

considered despite the unity norm-bound constraint on &q. 30
This weighting is incorporated into the stability analysis by

scaling the feedback signals between the _ operator and the
plant P to form the scaled plant. P.

_=_W_o oil (50) 35

A robust flutter margin is computed by analyzing Ix(F)
with respect to the A. The robust flutter pressure is deter-

mined by_ _iterating over scalings Wfi u_ntil the smallest
pressure q=qo=W_ is found for which the P is robustly stable
to the set of uncertainties A. Theorem 4.4.3 formally dem-

onstrates this concept.

Theorem 4.4.3: Given the plant P derived at nominal

dynamic pressure qo with a perturbation to dynamic pressure

and set of uncertainty operators A norm-bounded by one

arranged in the feedback relationship of FIG. 9, define the

plant P with real diagonal matrix WCascaling the feedback

signals relating &q and P. 50

_=p[W_o 0It (51)

-- rot, "X +WThen qfl,,_ =qo cais the robust flutter pressure if and
only ff g(P)=l. Also.

55

F_o_,=Wq (52)
60

represents the least conservative robust flutter margin

answering question 4.3.1.
Proof

_---(necessary)

The condition _t(Pl=l implies that the smallest destabi- 65

lizing perturbation to P is described by some AeA with I_1[_,
so no destabilizing AeA exists and the smallest positive

¢:
Fret, = Fno m ( 53

The proof demonstrating the necessary and sulficient
condition IX(P)=I also makes intuitive sense because the

equality sign is needed to ensure the flutter margin is valid

without being overly conservative. If IX(P)<I, then no AeA

causes an instability and the flutter margin is too conserva-

tive. If g(P_<l, then the system is not robust to all modeling

errors AeA and the flutter margin is not a valid robust flutter

margin.

Theorem 4.4.3 demonstrates a robust flutter margin can be

computed by determining a scaling matrix Wra for which _t(
15)=1. Algorithm 4.4.4 implements an iterative approach to

compute a scaling matrix for which _t(15)¢(1+_) for some

desired level of accuracy e.

Algorithm 4.4.4 (robust flutter margin):

Given plant P at nominal dynamic pressure qo affected by

unity norm-bounded _q and A as in FIG. 9:

Define initial weighting WCa.
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Define scalar ¢>0 for accuracy.

whih, (/a(PI > I + x)OR (/ziP) < 1 -e){

Wq
_(P)

--rob --
q aum,_ = q0 + l,_q

F_ = Wq

The dynamic pressure qo defining the flight condition for

the nominal plant dynamics must be chosen carefully to
ensure the robust flutter margin computed with algorithm
4.4.4 is valid. The nature of _t and the upper bound is such
that all norm-bounded operators centered around the origin
are assumed to be valid perturbations to the plant dynamics,
so positive and negative perturbations to dynamic pressure

are considered by the robust stability analysis. Thus, the
robust flutter margin computed by _(P)=I could correspond

to either perturbation q_¢=l or _=-1.
The actual dynamic pressure at the flutter instability is

occurs at a negative dynamic pressure that may be unreal-
istic for classical flutter analysis. The value of the nominal

dynamic pressure qo can slide along the real axis to a large

value without loss of generality in the _ analysis because this

parameter linearly affects the nominal dynamics. A simple

approach to ensure that the robust flutter pressure is a

positive dynamic pressure is demonstrated in algorithm
4.4.5, which iterates over increasing values of qo until the

sc_aling associated with the robust flutter margin satisfies W
_<qo-

Algorithm 4.4.5 (robust flutter margin with qo itemtiont:

Given parameters as in algorithm 4.4.4:

Given initial value of nominal dynamic pressure 90:

valid_margin = FALSE

while(validmargin == FALSE) {

compute plant P at nominal d>71amw pressure qo

compute ?]_,,, and associated W# from algorithm 4.4.4

(f ( Wq > _oL then _lo = l.lW_ I

else valid_margin = TRUE

The exclusion of low and negative dynamic pressures for

stability analysis may not be desirable for all applications

related to aeroelasticity. An example of such an application

is the analysis of aeroservoelastic dynamics for a high-

angle-of-attack aircraft that concerns instabilities at low

dynamic pressures. The procedure for these types of analysis

chooses a low value of qo and finds the scaling W_ corre-

sponding to q6_--1, which computes the low dynamic pres-

sure instability. Algorithm 4.4.5 can be modified for these

applications.

The flutter margin computation must allow for an arbi-

trary structure of operators A. so an upper bound such as the

US 6,216,063 B 1
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function derived in appendix A must be used. Algorithms
4.4.4 and 4.4.5 can be adapted by replacing the _ calculation

with a _t upper-bound calculation to compute flutter margins.
A search over frequency points is required when using the

5 upper bound (appendix A), so the accuracy of the robust
flutter margin requires a dense grid of frequencies associated

with the natural frequencies of the worst-case dynamics to
be considered.

A simple approach can be implemented if the natural

1o frequency of the unstable dynamics at the nominal flutter
pressure can be assumed to be similar to the natural fre-

quency of the unstable dynamics at the robust flutter pres-

sure. This assumption can be justified if the uncertainty does

not change the critical flutter mode between the nominal and

z5 robust flutter pressures, which is often true for systems that
have relatively small levels of uncertainty and clear sepa-

ration between critical and subcritical modal frequencies.

Algorithm 4.4.6 presents this approach, which first com-

putes the frequency of the nominal flutter mode and then

20 computes a robust flutter margin from the _ upper bound
evaluated near that frequency.

Algorithm 4.4.6 Irobust flutter margin with reduced fre-

quency grid):

Given the system in FIG. 9:

25 Compute frequency co associated with nominal flutter

dynamics using algorithm 4.4.2.

Define dense frequency grid _ centered around m.

Compute robust flutter mating from V upper bound evalu-

ated at _ using algorithm 4.4.5.
3o A large and dense frequency grid increases the confidence

that computed robustness measure is actually an upper

bound for _. Algorithm 4.4.6 must be used with caution

because the assumptions behind its use may not be satisfied.

Computing a robust flutter margin with a dense frequency

35 grid for a particular aircraft at several Mach numbers and

then comparing the frequencies of the flutter dynamics to

those of the nominal flutter dynamics is recommended. If

these frequencies are similar, then algorithm 4.4,6 can be

considered for further analysis at different Mach numbers.

40 4.5 Properties of the Structured Singular Value as a Flutter

Margin

The flutter computation method described herein uses _ as

the worst-case flutter parameter. The structured singular

value is a much more informative flutter margin than tradi-
45 tional parameters such as pole location and modal damping,

so _t presents several advantages as a flutter parameter.

The conservatism introduced by considering the worst-

case uncertainty perturbation can be interpreted as a measure

of sensitivity. Robust _t values that are significantly different
50 than the nominal flutter margins indicate the plant is highly

sensitive to modeling errors and changes in flight condition.

A small perturbation to the system can drastically alter the
flutter stability properties. Conversely, similarity between

the robust and nominal flutter margins indicates the aircraft

55 is not highly sensitive to small perturbations.
Robustness analysis determines not only the norm of the

smallest destabilizing perturbation but also the direction.

This information relates exact perturbations for which the

system is particularly sensitive. Thus, p can indicate the

6o worst-cast flutter mechanism, which may naturally extend to
indicate active and passive control strategies for flutter

suppression.
Damping is only truly informative at the point of insta-

bility because stable damping at a given condition does not

65 necessarily indicate an increase in dynamic pressure will be

a stable flight condition. The structured singular value

computes the smallest destabilizing perturbation, which
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indicates the nearest flight conditions that will cause a flutter

instability. In this respect. IX is a stability predictor and
damping is merely a stability indicator.

These characteristics of IX make the worst-case flutter

algorithm especially valuable for flight test programs.
Aeroelastic flight data can be measured at a stable flight

condition and used to evaluate uncertainty operators. Unlike

damping estimation, the _ method does not require the

aircraft to approach instability for accurate prediction. The g
can be computed to update the stability margins with respect

to the new uncertainty levels. The worst-case stability mar-

gin then indicates what flight conditions can be safely
considered.

Safe and efficient expansion of the flight envelope can be

performed using an on-line implementation of the worst-

case stability estimation algorithm. Computing Ix does not

introduce an excessive computational burden because each

F/A-18 flutter margin presented herein was derived in less

than 2 rain using standard off-the-shelf hardware and soft-

ware packages. The predictive nature of Ix and the compu-

tational efficiency allow a flutterometer tool to be developed

that tracks the flutter margin during a flight test.

5. UNCERTAINTY DESCRIPTIONS IN

AEROELASTIC MODELS

Parametric Uncertainty in Slructural Models

Parametric uncertainty denotes operators that describe

errors and unmodeled variations in specific elements and

coefficients in dynamic system equations. Recall the gener-
alized aeroelastic equation of motion for state vector qeR'-.

M[l$l$Ui+Ol+g_2+#Q_ s_rl---o (54

Robust flutter margins computed with the _t method are
strongly affected by the choice of uncertainty descriptions

associated with these dynamics, so this uncertainty must be

a reasonable indicator of potential modeling errors. Para-
metric uncertainty can be directly associated with the struc-

tural matrices to indicate specific errors in the finite-element
model.

Define an operator, Ax_R "'_' that describes additive uncer-

tainty of a nominal stiffness matrix K o. Associate a weight-

ing matrix, W,_R""' with this uncertainty such that a

stability analysis should consider a range of stiffness matri-

ces described by all A k with [_c_[_ < 1.

3O

tire. The actual choice of Ax and A. is problem-dependent

and can vary with different aircraft and different finite-

element modeling procedures.

The unqertainty operators are described in this section as

5 Ax-AceR ..... with real elements because the operators

describe perturbations to the generalized stiffness and damp-

ing matrices that are usually real. These operators are often

additionally constrained to be diagonal operators with n
independent parameters because the generalized stiffness

l0 and damping are often computed as real diagonal matrices.

The real and diagonal nature of these uncertainties is not
required for IXanalysis, so fuU-block complex uncertainties

can be used if they better describe the nature of the modeling

errors.

l.s Also, the weighting functions,WwWceR "_' are presented
as constant and real matrices because the functions are

associated with constant and real stiffness and damping

matrices. These constraints on the nominal plant through a

feedback relationship. The feedback operation w is a linear

20 combination of the states of the plant. The weightings can be

relaxed if the nature of the uncertainty is best described by

complex and frequency varying weighting functions,

Substitute the uncertain K and C into the equation of

motion, including the state-space representation of the

25 unsteady aerodynamic forces Q(s) presented in section 4.1.

Introduce a perturbation, _q, to dynamic pressure, and sepa-
rate the nominal dynamics from the unknown terms,

30 O=M[l$l$'gti+Cr_( l(+qD Ol'q+qC_

=Mtl+Cotl+Wo-Sct_+_Ko+14k,.Sh.+(q,,+_q_Dt,)Wl4"qo+6a)C_"(

---,]+IM-'Co_+M-'(Ko+eloD_,n]+qoM-'CQrI

35 +6_[M-'Dq'q+M'-'Cc'x]+A"c[M-'Wr<'ql+AcIM-'C°We_]

---rl+fM-ICorl+M-'_Ko+_oDe_rl+qoM-j C_t 1+6_%+._̂.zh4-_cZc

--rl+lM-ICo'd+M-'(Ko+(loDo_rl+qoM-*Ce_:]+w_+w,,.+wc (57)

40 The signals z_ and wfi are inlxoduced in section 4.2 to
relate the perturbation in dynamic pressure to the nominal

plant through a feedback relationship. The feedback opera-

tion wfi--_qz_ is used where z_ is a linear combination of the
states of the plant.

45

K=Ko+ WxA K (55)

Parametric uncertainty can also be associated with struc-

tural elements in a multiplicative relationship. Define an

operator, Ace.R ''°' that describes multiplicative uncertainty

of the nominal damping matrix C o. A weighting Wc_R _'' is

again associated with the uncertainty such that the antici-

pated range of damping matrices for robust stability analysis 55
is described by all AC with I[Act[,-_< I.

C=Co(I+WcAcJ ¢561

The choice of additive uncertainty for A t. and multiplica-

rive uncertainty for A c does not reflect any generalized

assumptions regarding the proper way to model errors in

stiffness and damping; rather, each type is included to
demonstrate the different mathematical derivations. Addi-

live and multiplicative operators are common types of

uncertainty models, so demonstrating how these types of

uncertainty are associated with a structural model is instruc-

zct=M- _DorI+M- tCQa (58 )

Additional signals are introduced to the plant formulation,

where z K and w h. are associated with the uncertainty in the

5o stiffness matrix, and z c and w c are associated with the

uncertainty in the damping matrix. The outputs of the plant

z K and z c are formulated as linear combinations of the states.

z _--M- _Wt,.'q

z_=M -_ WcCoq (59_

The feedback mechanism to describe the modeling uncer-

tainty uses a relationship between these output signals and
60 the w^. and w c input signals.

65

Wa=.5,vZx

Wc=.5eZ c (60)

The state-space plant malxix can be formulated using these

additional input and output signals.
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FIG. 10 shows how the uncertainty operators and pertur-

bation to dynamic pressure affect this plant formulation in a
feedback manner

The formulation does not directly allow uncertainty in

mass to be described by a feedback operator• The LFq" and

frameworks require uncertainty operators to affect the

nominal dynamics in a linear manner, and this requirement

precludes introducing mass uncertainty. The inverse of the
mass matrix scales most terms in the state matrix of P(s),

including terms involving _. Associating a mass uncertainty

operator A M with the mass matrix scaling q would introduce

terms of Ate5-4, which is a nonlinear funcdon of uncertainty
operators and cannot be directly considered by the _tmethod.

Parametric Uncertainty in Aerodynamic Models

The unsteady aerodynamic forces Q(s) _ C "_' can be

represented as a state-space model with no states.

_$)=DQ+Ctd(sI-A q) IBf2 162)

Parametric uncertainty can be associated with the matrix

elements of this state-space representation to describe errors.

These errors can result from several sources in the modeling

procedure, including computational fluid dynamic algo-

rithms that determine the frequency-varying forces and the

system identification algorithms that represent the compu-

tational values as a state-space system.
rlQ_'lDefine an operator Aa e R Q to describe uncertainty in

the state matrix of Q(s_. This operator directly affects a

nominal Ae0 and describes errors and variations in the poles
of the state-space representation of the unsteady aerody-

namic forces. Include a weighting function W a _ R ''_" such
• . Q

that the range of state mamces to be constdered by robust

stability analysis is described by all A% with [IA_tl[__-< 1.

Ac=Aoo+W_c._ae (63)

Define also an operator Asee R"q_" to describe muitipli-
cative uncertainty in a nominal B o matrix of Q(s) A

Q_

weighting function Ws _ R"_" is associated with this uncer-
. Q . •

tamty such that the range of possible B e matrices _s

described by all with I[AA¢It_=< 1.

BQ=BQo(I+WneAse) (64)

The choice of additiveand multiplicativeoperatorsis

made for reasons similar to those presented above in the first

subsection of this section 5. One of each type of uncertainty

is included to demonstrate the derivation procedures of how

each uncertainty is associated with the nominal aeroelastic

dynamics in a feedback relationship. The actual choice of

which type of uncertainty is most suitable to describe errors

in A e and B e is problem-dependent.

Also, defining the uncertainty operators as real and

15 weightings that are real and constant is not a requirement.

This section presents the problem formulation with these

definitions because associating these types of uncertainties

and weightings with the constant real A e and BQ matrices

makes intuitive sense. Certainly St can also compute robust

20 flutter margins with respect to complex frequency-varying

weighted uncertainties.
The nominal aeroelastic model in section 4.2 defined the

vector x as the states associated with the state-space model

Q(s). The matrices A e and B o directly affect the aeroelastic
25 dynamics only through the state derivative equation for x

and do not appear in the other state derivative equations. The
aeroelastic plant can be formulated in the B framework by

substituting the uncertain values ofA e and Be into this state
derivative equation without considering changes in the

3o derivative equations for-the remaining states rI and 11

.;_=AQ.x+Be_

35
-'=Aoox+Beoq+AaQWacr+ABvWsoBQorl

--Ae_r,+Boorl+A_oz,_e+Ast:,zao

=A_x+BooTI+W,4Q+WB 0

40

Several signals are introduced to this equation, where zae
and w A are associated with the uncertainty in A_ and zs

and w% is associated with the uncertainty in BQ. The sign's
z a and zn are output from the plant matrix as linear

0 . . fl
combmatron of the states.45

zAe=W,4ex

zee=WBeBeo_ (66)

.SO The feedback mechanism to describe the modeling uncer-

tainty uses a relationship between these output signals and

the w K and w c input signals.

55 w_e=aaez_ ¢

w eQ=Asozs¢ (67)

The state-space plant matrix can be formulated using

these additional input and output signals.
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FIG. 11 shows how the uncertainty operator and pertur-

bation to dynamic pressure affect this plant formulation in a
feedback manner.

Associating a AB uncertainty operator with the B,, matrix
q

may not seem immediately useful because considering

errors in the poles determined by the AQ matrix is often
intuited. This An uncertainty can be essential to accurately

describe the modeling errors because errors in terms com-

mon to both A o and BQ may exist. Such a situation arises for
certain modeling representations of aerodynamic lags. Con-

sider a simplified Roger's form Q(sj matrix that uses two

Pad6 approximations to represent lag terms.

s °l qQts_=--+-- = 0 -_2 - :
s+/h s+&

1 1

=-1_,,r_-,-13,dk,-wt_, (71}

Perform a similar derivation for the state equation of x>

15
.,_2=-ft-_,_-13:uQ

=-(l_zo+l_]t,.%,n zml_:_+W_:-x_:me

=-_, _-:fhoUe--% lW_.,.<,+w_?,_,)
20

=-_2_<.-f_2oue-%:z&

=--[_20XZ--_Z0I/Q--W[$ 2 (7 1 }

The signals zl_' and w13' are introduced as plant output and

{69) 25 input signals to relate the uncertainty Az, in a feedback

manner. The signals z_, and w_, are similarly introduced to

relate the uncertainty An: in 9 feedback manner. The state-
space matrix can be formulated to describe the nominal

Qo(s) with these additional input and output signals.

The poles of this system are determined entirely by the A o
matrix, so uncertainty in the poles can be entirely described

by a Aae operator associated with the AQ matrix. A similar
uncertaanty A n should also be associated with the B,_ matrix

in this case because the [_,, and [_2 terms appear in both Ale

and B o, Allowing variation in A o but not in B o will
introduce unwanted zeros to the system, so the proper way

to model pole uncertainty for this formulation is to include

both Aa_ and Aee operators.
The lbad6 approximation appears often in aeroelastic

models, so demonstrating the LFT formulation of Q(s),

which includes the uncertainties in poles _ and _2 in a

feedback relationship, may be useful. The uncertainties in

Q(s) can be developed distinctly from the structural uncer-

tainties because LFT operations allow the structural and

aerodynamic models to be combined into a single plant

model with a structured uncertainty description.

Define real scalar operators As, and An, to describe
uncertainty associated with nominal values of the poles [_zo

and 132o.Real scalar weightings WI_j and Wls: normalize the
uncertainty such that the range of poles to be considered by

robust stability analysis is described by all As, with

IIAB,I[_< 1 and all AI_: with I_1_..11_< 1.

Is,=lS,o+%_,

Define states x_ and x, of Q(s), and consider an input

signal u 0 that generates the output signal Yo by the rela-

tionship ye--Qu e. Substitute the uncertain 13_into the state
equation of x t.

_f_,oh-_bue-Al%zl_

30

_ =

35 Z_

YO

-13_° 0 -1 o -fl,o

o -&, o -t -I_,__

0 V_, 0 0 W_..

1 1 0 0 2

II
;i

]1 uQ

(73)

Dynamic Uncertainty

40 Dynamic uncertainty operators are often associated with

aeroelastic models to account for modeling errors that are

not efficiently described by parametric uncertainty. Unmod-

eled dynamics and inaccurate mode shapes are examples of

modeling errors that can be described with less conservatism

45 by dynamic uncertainties than with parametric uncertainties.

These dynamic uncertainties are typically complex in order
to represent errors in both magnitude and phase of signals.

Consider a system P having two modes with natural

frequencies at 4 rad/sec and 30 rad/sec.

5o

/ 16 _ 900 /
P= ks2 +O.'-4s+ 16]k s_-+0.6+900/

(74)

Define a nominal model Po, which will be used for
55 stability analysis of the system but does not model the

high-frequency mode of P.

60
p=(;, 16+ 0.4s + 16) (75)

The large difference in natural frequency between the

high-and low-frequency modes of P precludes parametric

uncertainty associated with the low-frequency mode of Po

65 from being a reasonable description of the modeling errors

in Po. The magnitude of any parametric uncertainty associ-

ated with the low-frequency mode would need to be
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extremely large to account for the unmodeled high-

frequency dynamics, so the stability analysis would be

relatively meaningless because the large uncertainty would

imply the plant is not accurate at an)' frequencies.

A multiplicative uncertainty operator A • C, can be used 5

to describe the high-frequency modeling error without intro-

ducing the excessive conservatism resulting from a para-

metric uncertainty description. Associate a complex, scalar,

weighting function W(s_ • C with this uncertainty to reflect

the frequencyvarying levels of modeling errors. _0

_ + 0.5
W: 100--

s + 500

The set of plants _P used for robust stability analysis is

formulated to account for the range of dynamics as

described by the norm-bounded multiplicative uncertainty
A.

_={PdI+W_:PlA[I__ l I t77)

FIG. 13 shows the block diagram for robust stability

analysis of 9 and FIG. 14 shows the magnitude of the

transfer function from input to output for P and Po, and the
maximum of [Po(I+W)] which is an upper bound for the

output of P at each frequency. The multiplicative uncertainty

is able to bound the modeling error at the frequency mode

without introducing excessive conservatism from large

uncertainty associated with the low frequency mode.

Dynamic additive operators may also be required in the

uncertainty description to account for errors that are not

efficiently described by either multiplicative and parametric

uncertainties. Modeling errors associated with a zero of the

system dynamics are an example of an error that is best

described by additive uncertainty. Multiplicative operators

are not useful in this case because Potjto)=0 at the frequency
to associated with the zero of nominal model and,

correspondingly, every member of the set of plants Po(Jto}

(I+WA)=0 at this frequency. Additive uncertainty allows the

system output for some member of the set of plants to be

nonzero even at frequencies of the zeros of the nominal

plant,

Consider a plant P with several poles and zeros.

16(s 2 + 0.48s + 64_ 900
e-- _t_/_s: +oT+ 9o0)

Assume the nominal plant Po of this plant is similar to P
and has the correct number of poles and zeros, but the 5o

coefficients of the system equations are incorrect.

P0 = 36_0s._ +0.4s+ 16)l,s 2 + 0.-'_'+ 900)

Define an additive uncertainty operator A _ C that is

normalized by a complex, scalar function W to reflect the

frequency-varying levels of the modeling errors.

s+50
W =O.l--

s+5

The set of plants 5P used for robust stability analysis is 65

formulated to account for the range of dynamics as

described by the norm-bounded additive uncertainty A.

36
_P=lP.+WzX:I/_i__ -< 1 } 181)

FIG. 15 shows the block diagram for robust stability

analysis of (P.

FIG. 16 shows the magnitude of the transfer function

from input to output for P and Po, and the maximum
magnitude of IPo+WA{ at each frequency. The additive

uncertainty bounds the modeling error at each frequency,

including the frequencies near the zero of the nominal plant,

because the output of P is bounded above by the maximum

magnitude of the members of the set 9.

(76) These multiplicative and additive uncertainties are par-

ticularly important when comparing an analytical transfer

function with experimental transfer functions derived from

15 flight data. Analytical models are often computed for a low

range of frequencies because the high frequencies add

complexity to the model but do not always affect the stability

margins of the aircraft. The experimental data may indicate

a high frequency mode that is not included in the analytical

20 model, so a frequency-weighted dynamic multiplicative

uncertainty can be associated with the model.

The issue of mode shape uncertainty is often encountered

when comparing low-frequency-predicted dynamical

responses with flight data because sensor measurements are

25 directly affected by the mode shapes. Both multiplicative

and additive uncertainties may be required to accurately

model mode shape errors and account for inaccurate

response levels (which may be higher than predicted at some

frequencies but lower than predicted at others) and inaccu-

30 rate frequencies associated with poles and zeros.
Uncertainty Associated with Nonlinearities

The _t framework described uses linear operators to rep-

resent dynamical models and associated uncertainties but
does not admit nonlinear operators. The It framework is

35 useful for analyzing aircraft stability despite the constraints

of linearity because physical systems, which are always

nonlinear, can often be approximated by linear models to a

high degree of accuracy. A classic example of this situation

notes the linearized dynamics are often an acceptable rep-
40 resentation of an aircraft operating near trim flight

conditions, so linear models work well in practice for control

synthesis and stability analysis.

Nonlinear dynamics cannot always be accurately

described by a linearized dynamics model, so the stability

(78) 45 analysis should consider the effects of these nonlinearities.
The _t framework can associate linear uncertainty operators

with linear models to describe the errors resulting from some

types of unmodeled nonlinear dyn.amics. The uncertainty

does not actually represent the nonlinearity; rather, the
uncertainty allows the linear system responses to vary with

sufficient magnitude to bound a range of nonlinear system

responses.
Separating the nonlinear dynamics that cannot be linear-

ized from the nonlinear dynamics that can be accurately

represented by linear models is useful. Separate uncertainty

descriptions can be formulated for each dynamical block,

and the resulting operators can be combined using the LFT

framework to formulate a single, linear, plant model with a

structured uncertainty description. FIG. 17 shows an

60 example LFT system representation for a nominal plant Po

_so) and associated uncertainty A, and a nominal linear model N O
and associated uncertainty AN representing a system element

with nonlinear dynamics.

The system shown in FIG. 17 is commonly used to

describe the coupling between the aeroelastic dynamics and

actuators affecting an aircraft through control surfaces.

Actuators can display many types of nonlinear behaviors
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and should be considered in the aeroelastic stability analysis,

because pilot and autopilot commands that maintain trim

during flight ensure the control surfaces are continuously

moving. The errors in linear models resulting from unmod-

eled actuator dynamics such as nonlinear stiffness param-

eters or hysteresis functions can sometimes be described by

a linear uncertainty operator.

Consider the response y of a nonlinear system N that

models a system that has a nonlinear stiffness corresponding

to a hardening spring that is valid for the bounded input

signal u c [-10, 10]. Such a system can represent an element
of an actuator model or a nonlinear structural model.

)=Nt_2tt+O.O2u2+O.OO82t¢ 3

Define a linear nominal model N o such that y=N o u

approximates the response of N.

No=2 (831

Associate an additive weighting operator AN with N o such

that stability analysis considers the set of plants N.

N= {NoA/¢:]LAN_i_ < | } (84_

FIG. 18 shows that the maximum and minimum magni-

tudes of the responses of the set N are able to bound the

response of the nonlinear system N for the range u e [ 10, 10].

These bounds are overly conservative throughout this oper-

ating range, but they achieve the desired goal of describing

errors in the linear system response resulting from the

unmodeled nonlinearity.

A similar procedure can be used to describe error caused

by an unmodeled nonlinear softening spring. Consider the

response y of a system represented by N that is valid for an

input signal u el-10, 10].

.',=N=2u+O.OO5uZ"4).OO5u 3 (85)

Define a linear nominal model N O such that y=N o u

approximates the response of N.

No=2 (86_

Associate an additive weighting operator AN with No such

that stability analysis considers the set of plants N.

HG. 19 shows that the maximum and minimum magni-

tudes of the responses of the set N are able to bound the

response of the nonlinear system N for the range u e [-10,

10]. These bounds are also overly conservative throughout

this operating range, but they achieve the desired goal of

describing errors in the linear system response resulting
from the umnodeled nonlinearity.

Another nonlinearity that commonly affects aeroelastic

systems is hysteresis. The response of a hysteretic system

depends on the trend of the input signal such that an

increasing input signal generates a certain response, but a

decreasing input signal generates a different response. Such

hysteresis dynamics are difficult to express as a simple

mathematical formula, so for illustrative purposes, assume N

is a nonlinear hysteresis function whose response y depends
on the trend of the input signal. Define a linear nominal

model N O whose response y=N o u approximates the

response of the hysteretic N.
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No=2 (88)

Associate an additive weighting operator A,, with N O such

that stability analysis considers the set of plants N.

N=._',,+-_x:II±AI_<-- t 18,_

Io FIG. 20 shows that the maximum and minimum magni-
tudes of the responses of the set N are able to bound the

response of the nonlinear system N with the hysteresis for

the range u _ [-10, 10]. Again, the bounds resulting from a
_82_ linear uncertainty description are overly conservative

15 throughout this operating range, _ut they achieve the desired

goal of describing errors caused by the unmodeled hysteresis
nonlinearity.

Explicitly constraining the operating region of the input

signal u e [-10, 10] can be important to developing reason-
20 able tmcertainties to describe errors resulting from unmod-

eled nonlinearities. The errors in the linear model can grow

excessively large when considering a large range of inputs,

so the uncertainty magnitude would need to also grow
excessively large. The conservatism resulting from such a

25 large uncertainty description may be unacceptable and

require the input range to be constrained to more reasonable
limits.

The uncertainty description, even for a constrained oper-

ating region, will usually be overly conservative when

30 describing modeling errors for certain parts of the operating
region. The uncertainty is able to bound the errors in FIGS.

19 and 20, but the maximum and minimum bound are

clearly not optimal. Some amount of conservatism is

expected when describing errors resulting from unmodeled

35 nonlinearities because a linear model, whether a single plant
or a set of plants, will usually not be an accurate represen-

tation of a nonlinear system that cannot be linearized.

Also, several types of unmodeled nonlinearities exist that

are frequently encountered in aircraft systems but are not

40 easily described by linear uncertainty operators associated

with the linear models. Examples of these types of nonlin-

earities include free play, dead-band responses, friction, and

rate limiting of actuators.

The robust stability margins computed from g with

45 respect to the linear uncertainty operators describing unmod-

eled nonlinear dynamics will always be somewhat suspect,

because this approach cannot consider stability properties

_87) unique to nonlinear systems such as bifurcation points and

limit-cycle behaviors. This approach limits the usefulness of

50 the _t method to systems for which the nonlinearities have

small effects on the response and do not introduce nonlinear
instabilities to the critical flutter mechanism.

Uncertainty Associated With Hight Data

A theoretical model with an associated uncertainty

55 description can be an accurate representation of the aeroelas-
tic dynamics of an aircraft, but responses from that model

may not identically match flight data. Additional uncertain-
ties can be associated with the model to describe errors that

are observed between the predicted responses and the mea-

6o sured responses from a commanded excitation to the aircraft.

These uncertainties do not necessarily indicate errors in the
model; rather, these uncertainties indicate errors in the

process used to generate aeroelastic responses and measure

flight data.

65 One source of error is an incorrect assumption of excita-

tion force used to generate the predicted and measured
responses. The measured excitation force associated with
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the flight data may not correctly account for poor hardware
performance and nonuniform spectral distribution of the

force. Also, inexactly phased excitation between multiple
force mechanisms can excite modes that are not anticipated

by a theoretical analysis. A frequency-varying dynamic
uncertainty can be associated with the force input of the

analytical model to describe errors in the excitation.

The phenomenon of nonrepeatibility can cause discrep-

ancies between predicted and measured responses from

multiple occurrences of excitation signals. Nonrepeatibility

affects flight data by introducing slight variations in
responses, even for data recorded at identical flight condi-

tions with identical excitation signals. This unexplained

behavior may result from some unmodeled nonlinear
dynamic or inexact excitation that is not correctly measured.

External disturbances such as wind gusts or turbulence can

introduce an unmodeled dynamic that inconsistently affects

the aircraft responses. A frequency varying dynamic uncer-

tainty can be associated with the model to describe nonre-

peatible data variations.
Another source of error between predicted an measured

responses is an incorrect assumption of flight condition.
Flight data sets are sometimes generated at test points that

attempt to maintain a constant flight condition to match the

data sets predicted from a model describing the aeroelastic

dynamics at that same flight condition. Slight variations in

flight conditions while the experimental response is mea-

sured may cause some discrepancy between the predicted

response and the flight data. Parametric uncertainty associ-

ated with the unsteady aerodynamic model can be used to

account for these errors because flight condition variations

only affect the aerodynamic model and not the structural
model.

The model may accurately represent the mode shapes of

the aircraft but have a poor representation of the sensor

locations. The responses measured by sensors are inherently

dependent on sensor location, with respect to mode shapes,

to determine the magnitude and phase of the signal. Addi-

tional errors in magnitude and phase are introduced when

considering transfer-function estimates generated by signals

that violate assumptions used in computational algorithms.

A frequency-varying dynamic uncertainty can be associated

with the output of the plant model to describe errors in both
mode shape and sensor location predictions.

The choice of signal-processing algorithms can also intro-
duce errors between predicted an measured responses. The

Fourier transform, which is the traditional tool for signal

processing, assumes several characteristics of the data that

may be violated with transient-response aeroelastic data.

Filtering and wavelet-based algorithms may be used to

reduce errors introduced by signal processing and reduce

conservatism in the resulting stability margins. Parameter

uncertainty associated with the modal parameters of the

linear model may be used to describe some errors in the

natural frequencies and dampings observed using flight data

analyzed by incorrect algorithms. Dynamic uncertainty may

also be required to describe errors introduced by leakage and

aliasing effects.

MODEL VALIDATION OF UNCERTAINTY

Model Validation Using the Structured Singular Value

Robust stability analysis considers the stability of a sys-

tem subject to a set of modeling errors and perturbations

represented by a norm-bounded A. A logical question that
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beyond the true modeling errors and can be overly optimistic
if the uncertainty does not sufficiently account for the true

modeling errors.

Model validation algorithms can be used to indicate if an

-_ uncertainty description is reasonable with respect to flight

data. These algorithms consider whether or not a set of data

measurements could have been generated by a proposed

model that includes the nominal dynamics and associated

uncertainty operators and noise and disturbance signals.

1o Uncertainty operators associated with the nominal plant

model specifically in the LPT framework can be considered

by validation algorithms. Frequency-domain algorithms are

generated that consider the model validation problem in the
context of control design. Tune-domain approaches are also

15 developed that can be solved with convex optimization

algorithms for certain uncertainty structures.

A model validation procedure has been formulated that

uses att condition to determine if an uncertainty model is

invalidated. This procedure uses frequency-domain transfer-2o
function data to determine if some perturbation AeA the
nominal plant could produce the measurements. Consider

the block diagram for robust stability analysis of systems
with measurement y and forcing u signals shown in FIG. 21.

The model validation question, as applied to uncertainty
25

models, is given in question 6.1.1.

Question 6.1.1 (uncertainty validation): Is there some
frequency-varying AeA for FIG. 21 such that F,(EA) could

generate the set of observed data y and u?

3o Define P(s) ec _*+"'_'_m' as a stable transfer-function sys-

tem matrix such that P _ _, 5-f. Partition this matrix into four

elements such that Pll(S) EC ...... , P22(S) EC.... i and P2j(s) are

of appropriate size. Pa2(s) is the nominal-plant transfer

function in the absence of uncertainty.
35

(901

40 Robust stability analysis of this system is determined

using the transfer function P], which comains the feedback

relationship between the plant dynamics and the uncertainty

operator. The robust stability condition given by theorem
3.3.3 requires _PH)<I.

45 The model validation condition uses the_ elements of P

and the finite-energy frequency-domain signals y, u _

where the measurements are scalar functions y, u _ C.

Formulate the following two matrices.

50

]St .-,=P_zu

15_.=.=Pz2u-y (91 )

55 The following theorem formulates the model validation test
using _t.

Theorem 6.1.2: Given measurements y generated by

inputs ix, then the system P with associated uncertainty set,
A is not invalidated if

60

_PH-P,.-P2._ -'PzO>l (92)

This condition may seem counterintuitive in that the

desired condition for validation is _t greater than one, while

arises is how to reasonably determine this set. This issue is 65 the robust stability condition seeks a value less than one.
important for computing robust flutter margins because I_ This condition can be explained by considering the follow-
can be overly conservative if the uncertainty is excessive ing relationship of y=F,,(P, A) u as shown in FIG. 6. 1.
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O=[P.._u-y]+P,_IA(I-PnA}-J[PI2u]=P._2+PzlA(I-PllA)-J"fit2 (93)

Define the plant P={PI i, Pl2, P2J, P__2}.A value of g(P)< 1

implies this system is robustly stable to all perturbations
AeA. This robust stability of g (i5)<1 also implies that the
loop gain F.(15_ A) is not singular for any value AeA. Thus

u (P)<I would contradict the relationship shown in the
above equations that requires F. (15, A) to be singular to
satisfy the input-to-output relationship of the data. In this
respect, the model validation test is actually an inverted
robust stability test.

The phrase "model validation" may be misleading. No

analytical model can ever be truly validated by considering

a finite set of experimental data. A model may not be

invalidated by the data, but no guarantee exists that a

different data set could not be generated from the physical

system that invalidates the model. The finite sets of mea-

surement data cannot record the response of the system to an

infinite number of input signals subject to an infinite number

of initial conditions. Theorem 6.1.2 reflects this fact by

explicity stating the condition only determines if the model

is invalidated by the data. The system is assumed to be

nearly linear, and the data is assumed to sufficiently repre-

sent the behavior of the dynamics, so theorem 6.1.2 repre-
sents a model validation test.

Validating Norm Bounds for Uncertainty

The value of g computed using theorem 6.1.2 can be

interpreted as a measure of how reasonable the uncertainty

description is. A value of g=2 implies the uncertainty can be

scaled by 2 before the model is invalidated. Alternatively, a

value of IX=0.5 implies twice as much uncertainty is required

for the model to not be invalidated. This interpretation of g,

as relating to the size of allowable perturbations, emphasizes

the relationship of the model validation condition to a robust

stability condition.

This model validation is used in practice to generate

reasonable norm bounds for an uncertainty description. The

following algorithm can be used to determine a sufficient

level of uncertainty required such that the model is not

invalidated by multiple data sets. A small scalar (x>l is

chosen to scale the uncertainty set and increase the amount
of allowable errors if the size of A is not sufficient.

Algorithm 6.2.1 (Model Validation):

Given frequency-domain data sets {Yl, Yz..... y,} and

{u,, u_..... u.}:
Given frequency-domain transfer-function P with ele-

ments P_I, PJ2, P21, P2--:

Given uncertainty set A with initial norm bound:

Given update scalar _x>l:

valid = FALSE

while_ valid = FALSE){

valid = TRUE

for/= l:nl

191z = Pizul

]5".2 = Pzz u_ - Yl

if.(e. - r,:_,) < ]l

valid = FALSE
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-continued

I

Pii = aP_l (equivalent to _ = aA)

A is the required norm-bounded uncertainty

20

25
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55

60

65

The norm bound on the uncertainty set A is not actually
10 .

increased with this method as denoted by the parentheses

around the statement A=(_. Scaling the uncertainty and

retaining these scalings throughout the procedure would be

difficult. The algorithm is simplified by always considering

15 the uncertainty is scaled such that g<l is always the desired

result. This scaling of the uncertainty is actually accom-

plished by the statement P_ _--o.P_ t which scales the feedback
signals between the plant and uncertainty operators. The

norm bound for the uncertainty that is needed to ensure the

uncertainty levels are not invalidated by the data is scaled

into the plant by the parameter _. Robust flutter margins can

be computed directly from the new scaled plant using

algorithm 4.4.6 with a desired g<l condition.

Algorithm 6.2.1 is a straightforward implementation of

the model validation test. The g values are only compared
with 1 to determine if the model is invalidated. More

sophisticated algorithms could use the value of y to deter-

mine the factor c_ to scale the uncertainty. Also, the values

of g across frequency could be exploited. Frequencies with

low y value indicate areas where the uncertainty set is least

conservative: frequencies with high Ix are overly conserva-

tive. The scaling 0_ could vary with frequency to reflect this
information.

The situation may arise when the initial value chosen for

the norm bound of the uncertainty set may be overly
conservative. In this situation, the model validation condi-

tion will pass for each data set during the first processing of

the outer loop. The initial norm bound can simply be

decreased by some level consistent with the lowest Ix value

computed during the validation checks, and algorithm 6.2.1

can be run again to compute a less conservative uncertainty

description that does not invalidate the model.

Theorem 6.1.2 is only valid for scalar data signals gen-

erated by systems with a single input and single output.

Multiple data signals can be considered by applying theorem

6.1.2 to each combination of singleinput and --output sig-

nals. Algorithm 6.2.1 can still be used by simply including

outer loops to cycle over the number of input and measure-

ment signals.

The model validation algorithm using theorem 6.1.2 is a

departure from traditional methods of analyzing flight data

to assess accuracy of an analytical model. The most widely

used algorithms for analyzing flight data estimate natural

frequencies and modal damping. The model validation pro-

cedure using g considers the response dynamics at each

frequency without explicitly comparing modal properties.

This procedure enhances the ability of the g method to

analyze flutter stability without requiring damping esti-
mates.

Another interpretation of algorithm 6.2.1 uses the uncer-

tainty A to bound the magnitude and phase of the possible

transfer functions generated by the family of plants F,(P,A).

The s_uctured singular value ensures the experimental data

transfer function lies within these analytical bounds at every

frequency.
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PROCEDURE FOR THE _t METHOD

Model Updating

Generating a model by analyzing flight data is essential

for computing a confident stability analysis. A nominal

model generated purely from analytical equations of the

predicted aircraft dynamics may not accurately describe the

true aircraft. A model must be generated that accounts for the

flight data to ensure the predicted dynamics represent the

true dynamics.

The most direct method of generating a model from the

flight data is to identify a system model entirely from the
data measurements. Many system identification algorithms

exist that have become standard tools for systems and

control engineers. Direct application of these methods to

aeroelastic systems rarely produces an accurate model that
accounts for the dynamics of the aircraft. Aeroelastic

response data is typically of poor quality relative to ground
vibration test data because of the low signal-to-noise ratio

and unobserved dynamics in the response measurements that

may drastically lower the effectiveness of system identifi-

cation algorithms.

An alternative method is to use the nominal aireratt

dynamical model as an initial estimate to model the true
aircraft. The flight data are then used to update the elements

of this model. Several methods have been devised to update

an analytical structural model using experimental data.

Model updating can be performed on the full stress model or

a subset computed with Guyan reduction. Generally, con-

sidering the full model is preferable because the reduction

may distribute local errors throughout the entire model if an

orthogonality condition is violated.

There are two basic methods for updating the full struc-

tural model using comparisons between experimental and

predicted data. One method updates the mass and stiffness
matrices of the finite element model. This method suffers

from lack of physical interpretation of the matrix updates

,and possible numerical conditioning. Another method

updates specific parameters in the model. This method is

accurate for small systems but may require an excessive

computational cost for large systems.

Aeroelastic models have the additional freedom of updat-

ing the aerodynamic and the structural elements. Another

method of updating the linear model in a modern control
framework has been developed. (K. D. Gondoly, Application

of Advanced Robustness Analysis to E.rperimental Flutter,
Masters of Science in Aeronautics and Astronautics Thesis,

Massachusetts Institute of Technology, June 1995.) This

method may be overly conservative for describing

nonlinearities, and the corresponding stability margins are

only accurate for flight conditions near the instability. A

parametric identification algorithm has been developed that

uses flight data to update specific terms in the aerodynamic

model through a nonlinear optimization. This method suffers

with flight data because of unobserved dynamics and the low

signal-to-noise ratio in the measurements.

The approach taken in this invention is to update only the

uncertainty operators of the robust aeroelastic model, using

the flight data, and leave the nominal dynamics model

unchanged. The model validation condition of theorem 6.1.2

is used with the nominal plant P to generate a reasonable
uncertainty description A to associate with P. FIG. 22 shows

the flow of information through the _ method.

Algorithm 6.2. I presents a procedure to implement the Ix

method in a manner corresponding to FIG. 22. The model

update procedure based on algorithm 6.2.1 actually scales

44

the plant but has the equivalent effect of scaling the norm

bound of the uncertainty description. The algorithm loops

over the model validation procedure until an uncertainty
description is determined that is not invalidated by the flight

5 data. The final step is to compute a robust flutter margin

from the scaled plant by using a _t<l condition as in

algorithm 4.4.6.

Algorithm 7.l.l (robust flutter margins with model
updating):

1o Given nominal plant P:

Given uncertainty set A associated with P:

Given input excitation data u:

Given output response measurement data y:

15 Define W_-<I as the scaling update for A

20

while (F_(P, AI is invalidated by u_ y using algorithm62.11t

4= WA

}

_[lu rob "¢:
t,_r l_ flutter margin computed from algorithm 4.4.6

flutter

25 Several advantages exist to using this method as com-

pared to traditional model updating methods. The typically

poor quality of flight data, in association with aircraft

dynamics consisting of many modes, makes updating a
nominal model difficult. Traditional methods of norm-based

30 update algorithms often generate a nonunique set of model

updates that have no way to determine which update has the

most logical physical interpretation. The method of updating

the uncertainty operators based on a worst-case magnitude

avoids this problem.
35 Also, this method can work with flight data of varying

quality. The updated uncertainty descriptio, _,J highly accu-
rate if the data show a high signal-to-noise r.ltio and much

of the dynamics are observed by the sensor;, if the data do

not have these desired characteristics, however, the method

40 can still compute a flutter margin. An uncertainty description

may be difficult to compute if the data do not indicate the

aircraft dynamics well, so the model validation procedure

will not require a large magnitude for the uncertainty opera-

tors. The robust model in this situation will closely resemble

45 the nominal model. In this way, the Ix method will always

generate a more accurate flutter margin, and at worst, the

robust IXflutter margin will be equivalent to the nominal

flutter margin.

Approaches to Use Flight Data
50 A flight test generally consists of maneuvers at several test

points that may be at identical or different flight conditions.

The entire flight test program will use many flight tests to
measure response data at test points throughout the flight

envelope. The model-updating method that generates uncer-
55 tainty operators can use the entire set of flight data from the

different test points.

Several approaches are formulated to use multiple flight

data sets to update the uncertainty description associated

with a nominal plant model. The uncertainty description

60 may be different for each approach, and the resulting flutter

margin will be different for each approach because of the

dependence of IXon the uncertainty set. Two approaches

discussed here are denoted as local and global.

A local approach uses flight data from test points at

65 identical flight conditions. These data are used to generate an

uncertainty description for the nominal model at the par-

ticular flight condition associated with the data. The mag-
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nitude of the uncertainty operators is chosen such that a The following algorithm 7.2.2 outlines the global

robust model at the single flight condition is not invalidated approach to use flight data and compute flutter margins.

by any of the flight data sets measured at the same flight Algorithm 7.2,2 (global approach):

condition with no consideration of data from other flight Define scalar nf as the number of flight conditions.

conditions. 5 Define scalar n i as the number of data sets at flight
The local approach shows the benefit of independently condition i.

computing uncertainty descriptions for models at different Define vectors {u, t, uf ..... u/"} as input excitations at

flight conditions. This approach allows each uncertainty flight condition i.

description to be more accurate because, for example, the Define vectors {yil y2 ..... y;"_} as response measure-

flight data may indicate much smaller uncertainty operators J0 ments at flight condition i.

are required for subsonic plant models even though large Define matrices {Pt, P ...... P,,,} as plant models at flight
uncertainty operators are required for transonic plant mod- condition i. -
eis. The resulting worst-case flutter margins will be less

Choose initial A_
conservative because less uncertainty is required for the

model. 15

The following algorithm 7.2.1 outlines the local approach

to use flight data and compute flutter margins, for j = 1 : nr

Algorithm 7.2.1 (local approach): for i = t : n_ {

Define scalar nf as the number of flight conditions. Validate F. (P., A) using yai and tP i
increase size of A if necessary to validate

Define scalar n, as the number of data sets at flight 20 }
condition i. }

fori=l :nr{
Define vectors {ut t, u_-_..... uF _} as input excitations at

compute flutter margin _Si_._from u(F.tPi. A))
flight condition i. }

Define vectors {y,?, y,r_..... yi ''_} as response measure-

ments at flight condition i. 25
Hybrid approaches have also been formulated that mix the

Define matrices {P,, P__..... PJ as plant models at flight local and global approaches. One straightforward hybrid

condition i. appro_ich is to generate an uncertainty description using all

data from a small range of flight conditions. This approach

30 can be useful for separately considering sets of plant models

for i = 1 : nf { that are generated using different techniques. For example,

Choose initial _ the model-generating package used for this paper computes
for j = 1 : n_ { all subsonic plant models with a doublet-lattice algorithm

Validate F. (P_. _) using yi and uJi and the supersonic models are generated with constant-panel
increase size of A i if necessary, to validate

I 35 algorithms. A hybrid approach could be used to reflect this

compute flutter margin 8_.._from ud:_(P_, AiD knowledge and consider groups of subsonic, supersonic, and
} transonic plants independently.

The approaches outlined here are certainly not exhaustive.

A global approach uses the entire set of flight data from A weighted-norm approach can be formulated that uses

test points throughout the flight envelope to generate a single 40 flight data from the entire envelope but depends heavily on

uncertainty description for all nominal aircraft models. The a particular subset of that data. Other approaches could

magnitudes of the uncertainty operators are chosen such that concentrate on particular dynamics through modal filtering

all nominal models with the associated uncertainty descrip- techniques to generate separate uncertainty descriptions for

tion are not invalidated by any of the flight data sets. individual modes.

Several advantages and disadvantages exist to using the 45 Although particular embodiments of the invention have

global approach instead of the local approach. One disad- been described and illustrated herein, it is recognized that

vantage is a possible large increase in conservatism of the modifications may readily occur to those skilled in the art.
flutter margin because the uncertainty description is not For example, although matrix algebra has been used

minimized at each flight condition. A single particularly throughout to describe the invention in order to facilitate its

inaccurately plant model will require large uncertainty 5o implementation by computer programming since the matri-
operators that may be highly conservative for plant models ces define for the progranuner how the elements are to be

at flight conditions that are better representations of the true processed, the invention is not limited to the implementation

dynamics, disclosed in this manner. Any other form of mathematical

One advantage to this approach, however, is that the expression and its implementation by computer program-

uncertainty description is truly worst-case with respect to the 55 ming will be equivalent. Consequently, it is intended that the

entire flight envelope, The worst-case errors from the worst- claims be interpreted to cover such modifications and

case fight condition are used to generate the uncertainty equivalents thereof.

description for all conditions. Also, this approach is not very What is claimed is:

sensitive to poorly measured flight data. A poorly modeled 1. An on-line method for robust flutter prediction in

modal response may only appear in certain data sets. The 6o expanding a safe flight envelope for an aircraft to define an

local approach would not include uncertainty for these envelope of safe flight conditions, comprising two parts, a

dynamics at conditions that did not clearly observe this first part comprising the steps of

modal response, so the resulting flutter margin would not (all generating a computer model of said aircraft,

account for the true level of modeling errors. The flutter (a2) computing flutter margins of said aircraft from said

margin generated with the global approach may be more 65 computer model using a singular value _t to define a first

conservative than the local approach, but this approach safe flight envelope and optionally using a well known

introduces a corresponding higher margin of safety, traditional method for defining a second safe flight
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envelope used in double checking the safety of said first

safe flight envelope defined by its computed flutter

margins,

(a3j if computed flutter margins thus double checked are

found to define an envelope of safe flight conditions, or

an optional method of defining a safe flight envelope is

not used. proceed to a second of said two parts,

said second part comprising in-flight steps of.

(b I ) taking said aircraft to a safest point within said first

safe flight envelope at a flight condition, E and m,'J-

suring flight data at said present condition F. includ,::g

dynamic pressure defined by parameters comprising

altitude and air speed;

(b2) compute a predicted flutter point, Fp, at a higher
dynamic pressure than at said condition F using an

algorithm based on said flight data and said singular

value _t;

(b3) determine dynamic pressure difference between

dynamic pressure of said aircraft at said present flight

condition F and at said predicted flutter point Fp;

48

(b41 if said dynamic pressure difference is large, take said

aircraft from present flight test condition to a new flight

test condition F,=F+A F, where AF are the changes to

parameters of flight condition F comprising altitude to

5 take said aircraft to a new flight condition Fp from flight

condition E to incrementally expand testing said first

safe flight envelope and repeat steps b 1, b2, b3 and b4;

but if said dynamic pressure difference is small, declare

to the last predicted flutter margin Up as a point on said

aircraft's expanded safe flight envelope, and repeat

steps bl-b4 until sufficient ffigti: conditions within said

first safe flight envelope have been tested to expand

margins thereof;
15

whereby a robust expanded flight envelope is determined for

said aircraft using said singular value g and said in-flight

steps.


